Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Oct;283:101–120. doi: 10.1113/jphysiol.1978.sp012490

Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex.

J A Movshon, I D Thompson, D J Tolhurst
PMCID: PMC1282767  PMID: 722570

Abstract

1. We have examined the spatial and temporal tuning properties of 238 cortical neurones, recorded using conventional techniques from acutely prepared anaesthetized cats. We determined spatial and temporal frequency tuning curves using sinusoidal grating stimuli presented to each neurone's receptive field by a digital computer on a cathode ray tube. 2. We measured tuning curves either by determining response amplitude as a function of spatial or temporal frequency, or by measuring contrast sensitivity (the inverse of the contrast of the grating that just elicited a detectable response). The two measures give very similar tuning curves in all cases. 3. We recorded from 184 neurones in area 17; of these 156 had receptive fields within 5 degrees of the area centralis. The range of preferred spatial frequency for these neurones was 0.3--3 c/deg, and their spatial frequency tuning band widths varied from 0.7 to 3.2 octaves at half-amplitude. The most common band width was roughly 1.3 octaves. Simple and complex cells in area 17 did not differ in their distributions of preferred spatial frequency, although complex cells were, on average, slightly less selective for spatial frequency than simple cells. 4. We recorded from fifty-four neurones from area 18, and performed several experiments in which we recorded from corresponding portions of both area 17 and area 18 in the same electrode penetration. Neurones in area 18 preferred spatial frequencies that were, on average, one third as high as those preferred by area 17 neurones at the same retinal eccentricity. Thus the range of preferred spatial frequency in area eighteen cells having receptive fields within 5 deg of the area centralis was between less than 0.1 and 0.5 c/deg. The distributions of optimum spatial frequency in the two areas were practically non-overlapping at eccentricities as high as 15 deg, the greatest eccentricity we examined. Neurones in area 18 were about as selective for spatial frequency as were neurones in area 17. 5. We determined temporal frequency tuning characteristics for some neurones from each area, using gratings that moved steadily across the screen. Neurones from area 17 all responded well to low temporal frequencies, and less well to higher frequencies (in excess of, usually, 2 or 4 Hz). In contrast, neurones recorded from area 18 sometimes had similar tuning properties, but more commonly showed a pronounced reduction in response as the temporal frequency was moved either above or below some optimum value (usually 2--8 Hz). 6. We conclude from these results that areas 17 and 18 act in parallel to process different aspects of the visual information relayed from the retina via the lateral geniculate complex. Some or all of the differences between the areas may be attributable to the predominance of Y cell input to area 18 and the predominance of X cell input to area 17...

Full text

PDF
101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake R., Camisa J. M. Temporal aspects of spatial vision in the cat. Exp Brain Res. 1977 Jun 27;28(3-4):325–333. doi: 10.1007/BF00235714. [DOI] [PubMed] [Google Scholar]
  2. Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleland B. G., Levick W. R. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol. 1974 Jul;240(2):421–456. doi: 10.1113/jphysiol.1974.sp010617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland B. G., Levick W. R., Morstyn R., Wagner H. G. Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. J Physiol. 1976 Feb;255(1):299–320. doi: 10.1113/jphysiol.1976.sp011281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland B. G., Levick W. R. Properties of rarely encountered types of ganglion cells in the cat's retina and an overall classification. J Physiol. 1974 Jul;240(2):457–492. doi: 10.1113/jphysiol.1974.sp010618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dreher B., Cottee L. J. Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17. J Neurophysiol. 1975 Jul;38(4):735–750. doi: 10.1152/jn.1975.38.4.735. [DOI] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuda Y., Stone J. Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. J Neurophysiol. 1974 Jul;37(4):749–772. doi: 10.1152/jn.1974.37.4.749. [DOI] [PubMed] [Google Scholar]
  9. Garey L. J., Blakemore C. The effects of monocular deprivation on different neuronal classes in the lateral geniculate nucleus of the cat. Exp Brain Res. 1977 Jun 27;28(3-4):259–278. doi: 10.1007/BF00235708. [DOI] [PubMed] [Google Scholar]
  10. Garey L. J., Powell T. P. An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc R Soc Lond B Biol Sci. 1971 Oct 12;179(1054):41–63. doi: 10.1098/rspb.1971.0080. [DOI] [PubMed] [Google Scholar]
  11. Gilbert C. D., Kelly J. P. The projections of cells in different layers of the cat's visual cortex. J Comp Neurol. 1975 Sep;163(1):81–105. doi: 10.1002/cne.901630106. [DOI] [PubMed] [Google Scholar]
  12. Gilbert C. D. Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol. 1977 Jun;268(2):391–421. doi: 10.1113/jphysiol.1977.sp011863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
  14. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffman K. P., Stone J. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 1971 Sep 24;32(2):460–466. doi: 10.1016/0006-8993(71)90340-4. [DOI] [PubMed] [Google Scholar]
  17. Hoffmann K. P. Conduction velocity in pathways from retina to superior colliculus in the cat: a correlation with receptive-field properties. J Neurophysiol. 1973 May;36(3):409–424. doi: 10.1152/jn.1973.36.3.409. [DOI] [PubMed] [Google Scholar]
  18. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  19. Holländer H., Vanegas H. The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase. J Comp Neurol. 1977 Jun 1;173(3):519–536. doi: 10.1002/cne.901730308. [DOI] [PubMed] [Google Scholar]
  20. Hubel D. H., Wiesel T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972 Dec;146(4):421–450. doi: 10.1002/cne.901460402. [DOI] [PubMed] [Google Scholar]
  21. Hubel D. H., Wiesel T. N. Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J Physiol. 1969 May;202(1):251–260. doi: 10.1113/jphysiol.1969.sp008808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ikeda H., Wright M. J. Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia. Exp Brain Res. 1976 May 10;25(1):63–77. doi: 10.1007/BF00237326. [DOI] [PubMed] [Google Scholar]
  23. Ikeda H., Wright M. J. Sensitivity of neurones in visual cortex (area 17) under different levels of anaesthesia. Exp Brain Res. 1974;20(5):471–484. doi: 10.1007/BF00238014. [DOI] [PubMed] [Google Scholar]
  24. Keesey U. T. Flicker and pattern detection: a comparison of thresholds. J Opt Soc Am. 1972 Mar;62(3):446–448. doi: 10.1364/josa.62.000446. [DOI] [PubMed] [Google Scholar]
  25. Kulikowski J. J., Tolhurst D. J. Psychophysical evidence for sustained and transient detectors in human vision. J Physiol. 1973 Jul;232(1):149–162. doi: 10.1113/jphysiol.1973.sp010261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LeVay S., Ferster D. Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J Comp Neurol. 1977 Apr 15;172(4):563–584. doi: 10.1002/cne.901720402. [DOI] [PubMed] [Google Scholar]
  27. LeVay S., Gilbert C. D. Laminar patterns of geniculocortical projection in the cat. Brain Res. 1976 Aug 20;113(1):1–19. doi: 10.1016/0006-8993(76)90002-0. [DOI] [PubMed] [Google Scholar]
  28. Maffei L., Fiorentini A. The unresponsive regions of visual cortical receptive fields. Vision Res. 1976;16(10):1131–1139. doi: 10.1016/0042-6989(76)90253-4. [DOI] [PubMed] [Google Scholar]
  29. Maffei L., Fiorentini A. The visual cortex as a spatial frequency analyser. Vision Res. 1973 Jul;13(7):1255–1267. doi: 10.1016/0042-6989(73)90201-0. [DOI] [PubMed] [Google Scholar]
  30. Mason R. Cell properties in the medial interlaminar nucleus of the cat's lateral geniculate complex in relation to the transient/sustained classification. Exp Brain Res. 1975 Mar 27;22(3):327–329. doi: 10.1007/BF00234773. [DOI] [PubMed] [Google Scholar]
  31. Movshon J. A. The velocity tuning of single units in cat striate cortex. J Physiol. 1975 Aug;249(3):445–468. doi: 10.1113/jphysiol.1975.sp011025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Movshon J. A., Thompson I. D., Tolhurst D. J. Receptive field organization of complex cells in the cat's striate cortex. J Physiol. 1978 Oct;283:79–99. doi: 10.1113/jphysiol.1978.sp012489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 1978 Oct;283:53–77. doi: 10.1113/jphysiol.1978.sp012488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. OTSUKA R., HASSLER R. [On the structure and segmentation of the cortical center of vision in the cat]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1962;203:212–234. doi: 10.1007/BF00352744. [DOI] [PubMed] [Google Scholar]
  35. Orban G. A., Callens M., Colle J. M. Unit responses to moving stimuli in area 18 of the cat. Brain Res. 1975 Jun 13;90(2):205–219. doi: 10.1016/0006-8993(75)90302-9. [DOI] [PubMed] [Google Scholar]
  36. Palmer L. A., Rosenquist A. C. Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. Brain Res. 1974 Feb 15;67(1):27–42. doi: 10.1016/0006-8993(74)90295-9. [DOI] [PubMed] [Google Scholar]
  37. Riva Sanseverino E., Galletti C., Maioli M. G. Responses to moving stimuli of single cells in the cat visual areas 17 and 18. Brain Res. 1973 Jun 15;55(2):451–454. doi: 10.1016/0006-8993(73)90312-0. [DOI] [PubMed] [Google Scholar]
  38. Rosenquist A. C., Edwards S. B., Palmer L. A. An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res. 1974 Nov 8;80(1):71–93. doi: 10.1016/0006-8993(74)90724-0. [DOI] [PubMed] [Google Scholar]
  39. Rossignol S., Colonnier M. A light microscope study of degeneration patterns in cat cortex after lesions of the lateral geniculate nucleus. Vision Res. 1971;Suppl 3:329–338. doi: 10.1016/0042-6989(71)90049-6. [DOI] [PubMed] [Google Scholar]
  40. Singer W., Tretter F., Cynader M. Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J Neurophysiol. 1975 Sep;38(5):1080–1098. doi: 10.1152/jn.1975.38.5.1080. [DOI] [PubMed] [Google Scholar]
  41. Stone J., Dreher B. Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. J Neurophysiol. 1973 May;36(3):551–567. doi: 10.1152/jn.1973.36.3.551. [DOI] [PubMed] [Google Scholar]
  42. Stone J., Fukuda Y. Properties of cat retinal ganglion cells: a comparison of W-cells with X- and Y-cells. J Neurophysiol. 1974 Jul;37(4):722–748. doi: 10.1152/jn.1974.37.4.722. [DOI] [PubMed] [Google Scholar]
  43. Stone J., Hoffmann K. P. Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? Brain Res. 1972 Aug 25;43(2):610–616. doi: 10.1016/0006-8993(72)90416-7. [DOI] [PubMed] [Google Scholar]
  44. Stone J. Morphology and physiology of the geniculocortical synapse in the cat: the question of parallel input to the striate cortex. Invest Ophthalmol. 1972 May;11(5):338–346. [PubMed] [Google Scholar]
  45. Tolhurst D. J. Adaptation to square-wave gratings: inhibition between spatial frequency channels in the human visual system. J Physiol. 1972 Oct;226(1):231–248. doi: 10.1113/jphysiol.1972.sp009982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tolhurst D. J., Movshon J. A. Spatial and temporal contrast sensitivity of striate cortical neurones. Nature. 1975 Oct 23;257(5528):674–675. doi: 10.1038/257674a0. [DOI] [PubMed] [Google Scholar]
  47. Tolhurst D. J. Separate channels for the analysis of the shape and the movement of moving visual stimulus. J Physiol. 1973 Jun;231(3):385–402. doi: 10.1113/jphysiol.1973.sp010239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tretter F., Cynader M., Singer W. Cat parastriate cortex: a primary or secondary visual area. J Neurophysiol. 1975 Sep;38(5):1099–1113. doi: 10.1152/jn.1975.38.5.1099. [DOI] [PubMed] [Google Scholar]
  49. Tusa R. J., Palmer L. A., Rosenquist A. C. The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol. 1978 Jan 15;177(2):213–235. doi: 10.1002/cne.901770204. [DOI] [PubMed] [Google Scholar]
  50. Wilson M. E., Cragg B. G. Projections from the lateral geniculate nucleus in the cat and monkey. J Anat. 1967 Sep;101(Pt 4):677–692. [PMC free article] [PubMed] [Google Scholar]
  51. Wilson P. D., Stone J. Evidence of W-cell input to the cat's visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 1975 Jul 18;92(3):472–478. doi: 10.1016/0006-8993(75)90333-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES