Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Oct;283:263–282. doi: 10.1113/jphysiol.1978.sp012499

An analysis of the cable properties of frog ventricular myocardium.

R A Chapman, C H Fry
PMCID: PMC1282776  PMID: 309942

Abstract

1. The passive and active electrical parameters of frog ventricular myocardium have been measured. 2. The cytoplasmic resistivity has been determined by following changes in the resistance of a micro-electrode on penetration of a cell. 3. Unidimensional cable analysis using direct and alternating currents revealed the presence of a single time constant attributed to the surface membrane. 4. Longitudinal impedance measurements indicate that a second time constant is present in the intracellular pathway. 5. The results indicate that the resistance between cells is low so that action potentials can propagate from cell to cell by local circuits. 6. A three-dimensional cable analysis has also been carried out and compared to a simplified mathematical model which is presented in an Appendix and which closely approximates the experimental situation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brink P., Barr L. The resistance of the septum of the median giant axon of the earthworm. J Gen Physiol. 1977 May;69(5):517–536. doi: 10.1085/jgp.69.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown H. F., Noble D., Noble S. J. The influence of non-uniformity on the analysis of potassium currents in heart muscle. J Physiol. 1976 Jul;258(3):615–629. doi: 10.1113/jphysiol.1976.sp011437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman R. A., Tunstall J. The dependence of the contractile force generated by frog auricular trabeculae upon the external calcium concentration. J Physiol. 1971 May;215(1):139–162. doi: 10.1113/jphysiol.1971.sp009462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol. 1976 Feb;255(2):335–346. doi: 10.1113/jphysiol.1976.sp011283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cole K. S., Baker R. F. LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON. J Gen Physiol. 1941 Jul 20;24(6):771–788. doi: 10.1085/jgp.24.6.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole K. S., Curtis H. J. ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY. J Gen Physiol. 1938 Sep 20;22(1):37–64. doi: 10.1085/jgp.22.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
  9. FATT P. AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606–651. doi: 10.1098/rspb.1964.0023. [DOI] [PubMed] [Google Scholar]
  10. Fozzard H. A. Membrane capacity of the cardiac Purkinje fibre. J Physiol. 1966 Jan;182(2):255–267. doi: 10.1113/jphysiol.1966.sp007823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freygang W. H., Trautwein W. The structural implications of the linear electrical properties of cardiac Purkinje strands. J Gen Physiol. 1970 Apr;55(4):524–547. doi: 10.1085/jgp.55.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GEORGE E. P. Resistance values in a syncytium. Aust J Exp Biol Med Sci. 1961 Jun;39:267–274. doi: 10.1038/icb.1961.27. [DOI] [PubMed] [Google Scholar]
  13. Heppner D. B., Plonsey R. Simulation of electrical interaction of cardiac cells. Biophys J. 1970 Nov;10(11):1057–1075. doi: 10.1016/S0006-3495(70)86352-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hodgkin A. L., Nakajima S. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol. 1972 Feb;221(1):105–120. doi: 10.1113/jphysiol.1972.sp009742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu Rev Physiol. 1971;33:479–532. doi: 10.1146/annurev.ph.33.030171.002403. [DOI] [PubMed] [Google Scholar]
  16. Kamiyama A., Matsuda K. Electrophysiological properties of the canine ventricular fiber. Jpn J Physiol. 1966 Aug 15;16(4):407–420. doi: 10.2170/jjphysiol.16.407. [DOI] [PubMed] [Google Scholar]
  17. Mobley B. A., Page E. The surface area of sheep cardiac Purkinje fibres. J Physiol. 1972 Feb;220(3):547–563. doi: 10.1113/jphysiol.1972.sp009722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NAYLER W. G., MERRILLEES N. C. SOME OBSERVATIONS ON THE FINE STRUCTURE AND METABOLIC ACTIVITY OF NORMAL AND GLYCERINATED VENTRICULAR MUSCLE OF TOAD. J Cell Biol. 1964 Sep;22:533–550. doi: 10.1083/jcb.22.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NIEDERGERKE R. MOVEMENTS OF CA IN FROG HEART VENTRICLES AT REST AND DURING CONTRACTURES. J Physiol. 1963 Jul;167:515–550. doi: 10.1113/jphysiol.1963.sp007166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohba M., Sakamoto Y., Tokuno H., Tomita T. Impedance components in longitudinal direction in the guinea-pig taenia coli. J Physiol. 1976 Apr;256(3):527–540. doi: 10.1113/jphysiol.1976.sp011337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Page S. G., Niedergerke R. Structures of physiological interest in the frog heart ventricle. J Cell Sci. 1972 Jul;11(1):179–203. doi: 10.1242/jcs.11.1.179. [DOI] [PubMed] [Google Scholar]
  22. Poindessault J. P., Duval A., Léoty C. Voltage clamp with double sucrose gap technique. External series resistance compensation. Biophys J. 1976 Feb;16(2 Pt 1):105–120. doi: 10.1016/s0006-3495(76)85668-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramón F., Anderson N., Joyner R. W., Moore J. W. Axon voltage-clamp simulations. A multicellular preparation. Biophys J. 1975 Jan;15(1):55–69. doi: 10.1016/S0006-3495(75)85791-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SANO T., TAKAYAMA N., SHIMAMOTO T. Directional difference of conduction velocity in the cardiac ventricular syncytium studied by microelectrodes. Circ Res. 1959 Mar;7(2):262–267. doi: 10.1161/01.res.7.2.262. [DOI] [PubMed] [Google Scholar]
  25. SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
  26. Sakamoto Y., Goto M. A study of the membrane constants in the dog myocardium. Jpn J Physiol. 1970 Feb 15;20(1):30–41. doi: 10.2170/jjphysiol.20.30. [DOI] [PubMed] [Google Scholar]
  27. Sakamoto Y. Membrane characteristics of the canine papillary muscle fiber. J Gen Physiol. 1969 Dec;54(6):765–781. doi: 10.1085/jgp.54.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Staley N. A., Benson E. S. The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanism of excitation-contraction coupling. J Cell Biol. 1968 Jul;38(1):99–114. doi: 10.1083/jcb.38.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stibitz G. R., McCann F. V. Studies of impedance in cardiac tissue using sucrose gap and computer techniques. II. Circuit simulation of passive electrical properties and cell-to-cell transmission. Biophys J. 1974 Feb;14(2):75–98. doi: 10.1016/S0006-3495(74)70001-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. TASAKI I., HAGIWARA S. Capacity of muscle fiber membrane. Am J Physiol. 1957 Mar;188(3):423–429. doi: 10.1152/ajplegacy.1957.188.3.423. [DOI] [PubMed] [Google Scholar]
  31. Tanaka I., Sasaki Y. On the electrotonic spread in cardiac muscle of the mouse. J Gen Physiol. 1966 Jul;49(6):1089–1110. doi: 10.1085/jgp.0491089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tarr M., Trank J. W. Limitations of the double sucrose gap voltage clamp technique in tension-voltage determinations on frog atrial muscle. Circ Res. 1976 Jul;39(1):106–112. doi: 10.1161/01.res.39.1.106. [DOI] [PubMed] [Google Scholar]
  33. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970 Nov;210(4):1041–1054. doi: 10.1113/jphysiol.1970.sp009256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weidmann S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol. 1966 Nov;187(2):323–342. doi: 10.1113/jphysiol.1966.sp008092. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES