Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 May;302:463–482. doi: 10.1113/jphysiol.1980.sp013256

Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs.

P Andersen, S H Sundberg, O Sveen, J W Swann, H Wigström
PMCID: PMC1282861  PMID: 7411464

Abstract

1. Long-lasting potentiation of synaptic transmission was studied in the CA1 region of guinea-pig hippocampal slices maintained in vitro. 2. Stimulating pulses were delivered alternately to two independent afferent pathways, stratum radiatum and stratum oriens. The presynaptic volleys and field e.p.s.p.s. were recorded from the same two layers, while an electrode in the pyramidal cell body layer recorded the population spike or in other experiments the extra- or intracellular potentials from a single pyramidal cell. 3. A short tetanus to either of the two input pathways produced a long-lasting enhancement of the field e.p.s.p. as well as an increased size and a reduced latency of the population spike. This long-lasting potentiation was observed for up to 110 min after tetanization. Extracellular unit recordings showed that this potentiation is accompanied by an increased probability of firing and a reduced firing latency. Intracellular recordings showed an increased e.p.s.p., through the increase was smaller and less regular than for the extracellular field e.p.s.p. 4. No corresponding changes were seen in the field potential responses to stimulation of the untetanized input path, or in the intracellularly measured soma membrane potential, resistance, or excitability. The latter two properties were measured by intracellular injection of current pulses. It is concluded that long-lasting potentiation is specific to the pathway which has received the tetanization. 5. Following tetanization there was also a short-lasting (usually 2-4 min) depression, most often seen for the control pathway but sometimes visible on the tetanized side as well, superimposed on the potentiation. It is concluded that the short-lasting depression is not confined to any particular pathway but is a generalized (unspecific) phenomenon.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger B. E., Teyler T. J. Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 1976 Jul 16;110(3):463–480. doi: 10.1016/0006-8993(76)90858-1. [DOI] [PubMed] [Google Scholar]
  2. Alnaes E., Rahamimoff R. On the role of mitochondria in transmitter release from motor nerve terminals. J Physiol. 1975 Jun;248(2):285–306. doi: 10.1113/jphysiol.1975.sp010974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen P., Blackstad T. W., Lömo T. Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp Brain Res. 1966;1(3):236–248. doi: 10.1007/BF00234344. [DOI] [PubMed] [Google Scholar]
  4. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  5. Andersen P., Silfvenius H., Sundberg S. H., Sveen O., Wigström H. Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Res. 1978 Apr 7;144(1):11–18. doi: 10.1016/0006-8993(78)90431-6. [DOI] [PubMed] [Google Scholar]
  6. Andersen P., Sundberg S. H., Sveen O., Wigström H. Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature. 1977 Apr 21;266(5604):736–737. doi: 10.1038/266736a0. [DOI] [PubMed] [Google Scholar]
  7. Bliss T. V., Gardner-Medwin A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):357–374. doi: 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deadwyler S. A., Dunwiddie T., Lynch G. Short lasting changes in hippocampal neuronal excitability following repetitive synaptic activation. Brain Res. 1978 May 26;147(2):384–389. doi: 10.1016/0006-8993(78)90849-1. [DOI] [PubMed] [Google Scholar]
  10. Douglas R. M., Goddard G. V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 1975 Mar 21;86(2):205–215. doi: 10.1016/0006-8993(75)90697-6. [DOI] [PubMed] [Google Scholar]
  11. Dunwiddie T., Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol. 1978 Mar;276:353–367. doi: 10.1113/jphysiol.1978.sp012239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunwiddie T., Madison D., Lynch G. Synaptic transmission is required for initiation of long-term potentiation. Brain Res. 1978 Jul 14;150(2):413–417. doi: 10.1016/0006-8993(78)90293-7. [DOI] [PubMed] [Google Scholar]
  13. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  14. HAMLYN L. H. An electron microscope study of pyramidal neurons in the Ammon's horn of the rabbit. J Anat. 1963 Apr;97:189–201. [PMC free article] [PubMed] [Google Scholar]
  15. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lynch G. S., Dunwiddie T., Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977 Apr 21;266(5604):737–739. doi: 10.1038/266737a0. [DOI] [PubMed] [Google Scholar]
  17. Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rall W., Shepherd G. M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol. 1968 Nov;31(6):884–915. doi: 10.1152/jn.1968.31.6.884. [DOI] [PubMed] [Google Scholar]
  19. Rosenthal J. Post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol. 1969 Jul;203(1):121–133. doi: 10.1113/jphysiol.1969.sp008854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartzkroin P. A., Wester K. Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res. 1975 May 16;89(1):107–119. doi: 10.1016/0006-8993(75)90138-9. [DOI] [PubMed] [Google Scholar]
  21. Weinreich D. Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol. 1971 Jan;212(2):431–446. doi: 10.1113/jphysiol.1971.sp009333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wigström H. A neuron model with learning capability and its relation to mechanisms of association. Kybernetik. 1973 May;12(4):204–215. doi: 10.1007/BF00270573. [DOI] [PubMed] [Google Scholar]
  23. Wigström H., Swann J. W., Andersen P. Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice. Acta Physiol Scand. 1979 Jan;105(1):126–128. doi: 10.1111/j.1748-1716.1979.tb06323.x. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto C., Chujo T. Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings. Exp Neurol. 1978 Jan 15;58(2):242–250. doi: 10.1016/0014-4886(78)90137-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES