Abstract
1. Intracellular activity was recorded from neurones in the CA1 pyramidal layer of slices of rat hippocampus maintained in vitro. 2. Application of 5-HT in a droplet or via ionophoresis produced a 3-5 mV hyperpolarization associated with a 30% decrease in input resistance. 3. The response to 5-HT was minimal with a drop concentration of 1 microM and maximal with 100 microM. The responses appeared to be blocked by methysergide applied in the superfusion medium. 4. The responses to 5-HT were minimal when the drug was applied in the apical dendritic region and maximal when it was applied near the soma. 5. 5-HT produced no substantial changes in e.p.s.p.s evoked by stimulation of the Schaffer collateral-commissural system or in i.p.s.p.s which were occasionally encountered following stimuli to the stratum radiatum. 6. The responses to 5-HT are true post-synaptic responses and are not indirect effects since they are present in a Ca2+-deficient Mg2+-enriched medium which blocks synaptic transmission. 7. The responses to 5-HT were not dependent on extracellular Cl- concentration. 8. These experiments indicate that 5-HT produces its effects in the rat hippocampus by activating K+ channels.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
- Andersen P., Silfvenius H., Sundberg S. H., Sveen O., Wigström H. Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Res. 1978 Apr 7;144(1):11–18. doi: 10.1016/0006-8993(78)90431-6. [DOI] [PubMed] [Google Scholar]
- Azmitia E. C., Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol. 1978 Jun 1;179(3):641–667. doi: 10.1002/cne.901790311. [DOI] [PubMed] [Google Scholar]
- Barasi S., Roberts M. H. The modification of lumbar motoneurone excitability by stimulation of a putative 5-hydroxytryptamine pathway. Br J Pharmacol. 1974 Nov;52(3):339–348. doi: 10.1111/j.1476-5381.1974.tb08601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett J. P., Jr, Snyder S. H. Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol. 1976 May;12(3):373–389. [PubMed] [Google Scholar]
- Bloom F. E., Hoffer B. J., Siggins G. R., Barker J. L., Nicoll R. A. Effects of serotonin on central neurons: microiontophoretic administration. Fed Proc. 1972 Jan-Feb;31(1):97–106. [PubMed] [Google Scholar]
- Bradley P. B., Briggs I. Further studies on the mode of action of psychotomimetic drugs: antagonism of the excitatory actions of 5-hydroxytryptamine by methylated derivatives of tryptamine. Br J Pharmacol. 1974 Mar;50(3):345–354. doi: 10.1111/j.1476-5381.1974.tb09609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad L. C., Leonard C. M., Pfaff D. W. Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol. 1974 Jul;156(2):179–205. doi: 10.1002/cne.901560205. [DOI] [PubMed] [Google Scholar]
- Cottrell G. A., Macon J. B. Synaptic connexions of two symmetrically placed giant serotonin-containing neurones. J Physiol. 1974 Jan;236(2):435–464. doi: 10.1113/jphysiol.1974.sp010445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couch J. R. Further evidence for a possible excitatory serotonergic synapse on raphe neurons of pons and lower midbrain. Life Sci. 1976 Sep 1;19(5):761–767. doi: 10.1016/0024-3205(76)90175-2. [DOI] [PubMed] [Google Scholar]
- Gage F. H., Thompson R. G., Valdes J. J. Endogenous norepinephrine and serotonin within the hippocampal formation during the development and recovery from septal hyperreactivity. Pharmacol Biochem Behav. 1978 Sep;9(3):359–367. doi: 10.1016/0091-3057(78)90297-6. [DOI] [PubMed] [Google Scholar]
- Gerschenfeld H. M., Paupardin-Tritsch D. Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. J Physiol. 1974 Dec;243(2):427–456. doi: 10.1113/jphysiol.1974.sp010761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi H., Libet B. Generation of slow postsynaptic potentials without increases in ionic conductance. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1304–1311. doi: 10.1073/pnas.60.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lidov H. G., Molliver M. E., Zecevic N. R. Characterization of the monoaminergic innervation of immature rat neocortex: a histofluorescence analysis. J Comp Neurol. 1978 Oct 1;181(3):663–679. doi: 10.1002/cne.901810311. [DOI] [PubMed] [Google Scholar]
- Moore R. Y., Halaris A. E. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol. 1975 Nov 15;164(2):171–183. doi: 10.1002/cne.901640203. [DOI] [PubMed] [Google Scholar]
- Nelson D. L., Herbet A., Bourgoin S., Glowinski J., Hamon M. Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol Pharmacol. 1978 Nov;14(6):983–995. [PubMed] [Google Scholar]
- Pellmar T. C., Carpenter D. O. Voltage-dependent calcium current induced by serotonin. Nature. 1979 Feb 8;277(5696):483–484. doi: 10.1038/277483a0. [DOI] [PubMed] [Google Scholar]
- Phillis J. W., Tebècis A. K., York D. H. The inhibitory action of monoamines on lateral geniculate neurones. J Physiol. 1967 Jun;190(3):563–581. doi: 10.1113/jphysiol.1967.sp008228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. H., Straughan D. W. Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol. 1967 Nov;193(2):269–294. doi: 10.1113/jphysiol.1967.sp008357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastry B. S., Phillis J. W. Inhibition of cerebral cortical neurones by a 5-hydroxytryptaminergic pathway from median raphé nucleus. Can J Physiol Pharmacol. 1977 Jun;55(3):737–743. doi: 10.1139/y77-099. [DOI] [PubMed] [Google Scholar]
- Sawada M., Coggeshall R. E. A central inhibitory action of 5-hydroxytryptamine in the leech. J Neurobiol. 1976 Nov;7(6):477–482. doi: 10.1002/neu.480070602. [DOI] [PubMed] [Google Scholar]
- Schwartzkroin P. A. Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 1975 Mar 7;85(3):423–436. doi: 10.1016/0006-8993(75)90817-3. [DOI] [PubMed] [Google Scholar]
- Segal M. 5-HT antagonists in rat hippocampus. Brain Res. 1976 Feb 13;103(1):161–166. doi: 10.1016/0006-8993(76)90699-5. [DOI] [PubMed] [Google Scholar]
- Segal M., Landis S. Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res. 1974 Sep 20;78(1):1–15. doi: 10.1016/0006-8993(74)90349-7. [DOI] [PubMed] [Google Scholar]
- Segal M. Physiological and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Res. 1975 Aug 22;94(1):115–131. doi: 10.1016/0006-8993(75)90881-1. [DOI] [PubMed] [Google Scholar]
- Segal M. The effects of brainstem priming stimulation on interhemispheric hippocampal responses in the awake rat. Exp Brain Res. 1977 Jul 15;28(5):529–541. doi: 10.1007/BF00236475. [DOI] [PubMed] [Google Scholar]
- Wang R. Y., Aghajanian G. K. Inhibiton of neurons in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res. 1977 Jan 14;120(1):85–102. doi: 10.1016/0006-8993(77)90499-1. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Salmoiraghi G. C. Serotonin effects on central neurons. Adv Pharmacol. 1968;6(Pt A):395–413. doi: 10.1016/s1054-3589(08)61195-3. [DOI] [PubMed] [Google Scholar]
- Yamamoto C. Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro. Exp Brain Res. 1972;14(4):423–435. doi: 10.1007/BF00235037. [DOI] [PubMed] [Google Scholar]