Abstract
1. A study has been made of the decline in contractility and some associated metabolic changes which occur in the isolated frog ventricle during the development of hypodynamic depression. 2. The release of two identified prostaglandins (PG), E1 and E2, together with several as yet unknown prostaglandin-related substances (PRS), accompanies the development of hypodynamic depression. There is a close correlation between the extent to which the isometric twitch is depressed and the quantity of prostaglandin released into the superfusate. 3. Fractionation of extracts of 'used' superfusates, using preparative-scale thin-layer chromatography, revealed the presence of six major components, four of which (PGE1 and PGE2 and two unidentified components) were found to be cardioactive and potentiated contraction when tested subsequently on hypodynamic preparations. 4. Two agents which influence prostaglandin biosynthesis, arachidonic acid and indomethacin, are found to affect both the rate at which the hypodynamic state develops and the extent to which the 'steady-state' twitch tension is depressed, in a dose-dependent manner. Indomethacin, a PG-synthetase inhibitor, accelerates the decay and depresses the final 'steady-state' tension attained, whereas arachidonic acid, the principal precursor for prostaglandin biosynthesis, has the converse effects. 5. Measurements of endogenous 3'5'-cyclic nucleotide levels reveal a time-dependent decrease in intracellular adenosine 3'5'-cyclic monophosphate (3'5'-cyclic AMP) and a concomitant increase in guanosine 3'5' cyclic monophosphate (3'5'-cyclic GMP). The decline in isometric twitch tension is paralleled almost exactly by an equivalent reduction in the ratio 3'5'-cyclic AMP: 3'5'-cyclic GMP. 6. Superfusion of isolated ventricles with Ringer solution containing exogenous, lipid-soluble derivatives of 3'5'-cyclic AMP and 3'5'-cyclic GMP affects both the rate of decline of the isometric twitch and the steady-state tension ultimately reached: thus, 8-bromo-3'5'-cyclic GMP accelerates the decline in contractility and depresses the steady-state level, whereas dibutyryl 3'5'-cyclic AMP delays the development of hypodynamic depression, and elevates the final twitch tension. The effects of both 3'5' cyclic nucleotide derivatives are dose-dependent. 7. The possible involvement of prostaglandins and 3'5'-cyclic nucleotides as causal agents in the mechanism of hypodynamic depression is discussed. The biochemical basis for the implied antangonistic effects of 3'5'-cyclic AMP and 3'5'-cyclic GMP in regulating ventricular contractility is considered in the following paper (Flitney & Singh, 1980).
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERTI F., LENTATI R., USARDI M. M. THE SPECIES SPECIFICITY OF PROSTAGLANDIN E 1 EFFECTS ON ISOLATED HEART. Med Pharmacol Exp Int J Exp Med. 1965;13:233–240. doi: 10.1159/000135726. [DOI] [PubMed] [Google Scholar]
- Block A. J., Feinberg H., Herbaczynska-Cedro K., Vane J. R. Anoxia-induced release of prostaglandins in rabbit isolated hearts. Circ Res. 1975 Jan;36(1):34–35. doi: 10.1161/01.res.36.1.34. [DOI] [PubMed] [Google Scholar]
- Block A. J., Poole S., Vane J. R. Modification of basal release of prostaglandins from rabbit isolated hearts. Prostaglandins. 1974 Sep 25;7(6):473–486. doi: 10.1016/0090-6980(74)90092-6. [DOI] [PubMed] [Google Scholar]
- Brooker G. Dissociation of cyclic GMP from the negative inotropic action of carbachol in guinea pig atria. J Cyclic Nucleotide Res. 1977 Dec;3(6):407–413. [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Effects of calcium on the contraction of the hypodynamic frog heart. J Physiol. 1970 Dec;211(2):389–421. doi: 10.1113/jphysiol.1970.sp009284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Niedergerke R. Interaction between heart rate and calcium concentration in the control of contractile strength of the frog heart. J Physiol. 1970 Dec;211(2):423–443. doi: 10.1113/jphysiol.1970.sp009285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung W. Y., Lynch T. J., Wallace R. W. An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic neucleotide phosphodiesterase. Adv Cyclic Nucleotide Res. 1978;9:233–251. [PubMed] [Google Scholar]
- Clark A. J. The action of ions and lipoids upon the frog's heart. J Physiol. 1913 Oct 17;47(1-2):66–107. doi: 10.1113/jphysiol.1913.sp001614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J., Ten Eick R. E., Trapani A. J. Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in the heart? Biochem Biophys Res Commun. 1977 Dec 7;79(3):912–918. doi: 10.1016/0006-291x(77)91197-4. [DOI] [PubMed] [Google Scholar]
- Dunham E. W., Haddox M. K., Goldberg N. D. Alteration of vein cyclic 3':5' nucleotide concentrations during changes in contractility. Proc Natl Acad Sci U S A. 1974 Mar;71(3):815–819. doi: 10.1073/pnas.71.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flitney F. W., Lamb J. F., Singh J. Intracellular cyclic nucleotides and contractility of the hypodynamic frog ventricle [proceedings]. J Physiol. 1978 Mar;276:38P–39P. [PubMed] [Google Scholar]
- Flitney F. W., Singh J. Exogenous uridine 5'-triphosphate enhances contractility and stimulates 3',5'-cyclic nucleotide metabolism in the isolated frog ventricle [proceedings]. J Physiol. 1979 Jun;291:52P–53P. [PubMed] [Google Scholar]
- Flitney F. W., Singh J. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides. J Physiol. 1980 Jul;304:21–42. doi: 10.1113/jphysiol.1980.sp013307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flitney F. W., Singh J. Release of prostaglandins from the superfused frog ventricle during the development of the hypodynamic state [proceedings]. J Physiol. 1978 Dec;285:18P–19P. [PubMed] [Google Scholar]
- GADDUM J. H. The technique of superfusion. Br J Pharmacol Chemother. 1953 Sep;8(3):321–326. doi: 10.1111/j.1476-5381.1953.tb00801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN K., SAMUELSSON B. PROSTAGLANDINS AND RELATED FACTORS: XIX. THIN-LAYER CHROMATOGRAPHY OF PROSTAGLANDINS. J Lipid Res. 1964 Jan;5:117–120. [PubMed] [Google Scholar]
- GREINER T. The relationship of force of contraction to high-energy phosphate in heart muscle. J Pharmacol Exp Ther. 1952 Jun;105(2):178–195. [PubMed] [Google Scholar]
- George W. J., Ignarro L. J., Paddock R. J., White L., Kadowitz P. J. Oppositional effects of acetylcholine and isoproterenol on isometric tension and cyclic nucleotide concentrations in rabbit atria. J Cyclic Nucleotide Res. 1975;1(5):339–347. [PubMed] [Google Scholar]
- George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George W. J., Wilkerson R. D., Kadowitz P. J. Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J Pharmacol Exp Ther. 1973 Jan;184(1):228–235. [PubMed] [Google Scholar]
- Goldberg N. D., Haddox M. K., Nicol S. E., Glass D. B., Sanford C. H., Kuehl F. A., Jr, Estensen R. Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin Yang hypothesis. Adv Cyclic Nucleotide Res. 1975;5:307–330. [PubMed] [Google Scholar]
- Grand R. J., Perry S. V., Weeks R. A. Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem J. 1979 Feb 1;177(2):521–529. doi: 10.1042/bj1770521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gudbjarnason S. Prostaglandins and polyunsaturated fatty acids in heart muscle. J Mol Cell Cardiol. 1975 Jul;7(7):443–449. doi: 10.1016/0022-2828(75)90162-5. [DOI] [PubMed] [Google Scholar]
- Horton E. W., Main I. H. Further observations on the central nervous actions of prostaglandins F2a and E1. With an addendum on the effects of prostglandins E1 and F2a on systemic arterial blood pressure in chicks. Br J Pharmacol Chemother. 1967 Aug;30(3):568–581. doi: 10.1111/j.1476-5381.1967.tb02163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Junstad M., Wennmalm A. Release of prostaglandin from the rabbit isolated heart following vagal nerve stimulation or acetylcholine infusion. Br J Pharmacol. 1974 Nov;52(3):375–379. doi: 10.1111/j.1476-5381.1974.tb08605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein I., Levey G. S. Effect of prostaglandins on guinea pig myocardial adenyl cyclase. Metabolism. 1971 Sep;20(9):890–896. doi: 10.1016/0026-0495(71)90051-5. [DOI] [PubMed] [Google Scholar]
- Kuehl F. A., Jr, Humes J. L. Direct evidence for a prostaglandin receptor and its application to prostaglandin measurements (rat-adipocytes-antagonists-analogues-mouse ovary assay). Proc Natl Acad Sci U S A. 1972 Feb;69(2):480–484. doi: 10.1073/pnas.69.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuehl F. A., Jr, Humes J. L., Tarnoff J., Cirillo V. J., Ham E. A. Prostaglandin receptor site: evidence for an essential role in the action of luteinizing hormone. Science. 1970 Aug 28;169(3948):883–886. doi: 10.1126/science.169.3948.883. [DOI] [PubMed] [Google Scholar]
- Kuehl F. A., Jr Prostaglandins, cyclic nucleotides and cell function. Prostaglandins. 1974 Feb 25;5(4):325–340. doi: 10.1016/s0090-6980(74)80116-4. [DOI] [PubMed] [Google Scholar]
- LICHTNECKERT I., STRAUB F. B. The action of adenosinetriphosphate on the isolated frog heart. Hung Acta Physiol. 1949;2(1-4):50–57. [PubMed] [Google Scholar]
- Lamb J. F., McGuigan J. A. Contractures in a superfused frog's ventricle. J Physiol. 1966 Oct;186(2):261–283. doi: 10.1113/jphysiol.1966.sp008033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy J. V., Killebrew E. Inotropic effects of prostaglandin E2 on isolated cardiac tissue. Proc Soc Exp Biol Med. 1971 Apr;136(4):1227–1231. doi: 10.3181/00379727-136-35463. [DOI] [PubMed] [Google Scholar]
- MARSHALL J. M., ANDRUS E. C. Comparison of effects of various phosphate compounds and aluminum silicate on isolated frog heart. Proc Soc Exp Biol Med. 1953 Feb;82(2):228–231. doi: 10.3181/00379727-82-20074. [DOI] [PubMed] [Google Scholar]
- Minkes M. S., Douglas J. R., Jr, Needleman P. Prostaglandin release by the isolated perfused rabbit heart. Prostaglandins. 1973 Apr;3(4):439–445. doi: 10.1016/0090-6980(73)90151-2. [DOI] [PubMed] [Google Scholar]
- Mironneau J., Grosset A. Ionic mechanism of inotropic effect of prostaglandin E1 on frog atrial muscle. Pflugers Arch. 1976 Oct 15;366(1):79–81. doi: 10.1007/BF02486564. [DOI] [PubMed] [Google Scholar]
- Needleman P. The synthesis and function of prostaglandins in the heart. Fed Proc. 1976 Oct;35(12):2376–2381. [PubMed] [Google Scholar]
- Powell W. S., Hammarström S., Samuelsson B. Occurrence and properties of a prostaglandin F2alpha receptor in bovine corpora lutea. Eur J Biochem. 1975 Aug 1;56(1):73–77. doi: 10.1111/j.1432-1033.1975.tb02208.x. [DOI] [PubMed] [Google Scholar]
- Ringer S. Regarding the influence of the Organic Constituents of the blood on the Contractility of the Ventricle. J Physiol. 1885 Nov;6(6):361–463.7. doi: 10.1113/jphysiol.1885.sp000203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saks V. A., Rosenshtraukh L. V., Undrovinas A. I., Smirnov V. N., Chazov E. I. Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction. Biochem Med. 1976 Aug;16(1):21–36. doi: 10.1016/0006-2944(76)90005-3. [DOI] [PubMed] [Google Scholar]
- Samuelsson B. Biosynthesis of prostaglandins. Fed Proc. 1972 Sep-Oct;31(5):1442–1450. [PubMed] [Google Scholar]
- Singh J., Flitney F. W., Lamb J. F. Effects of isoprenaline on contractile force and intracellular cyclic 3',5'-nucleotide levels in the hypodynamic frog ventricle. FEBS Lett. 1978 Jul 15;91(2):269–272. doi: 10.1016/0014-5793(78)81189-2. [DOI] [PubMed] [Google Scholar]
- Smejkal V., Rougier O., Garnier D. The influence of adrenergic and some other cardioactive drugs on electric activity of the isolated frog atrium. Physiol Bohemoslov. 1970;19(1):23–25. [PubMed] [Google Scholar]
- Ten Hoor F., Vergroesen A. J. Prostaglandins and the heart. J Mol Cell Cardiol. 1975 Aug;7(8):535–541. doi: 10.1016/0022-2828(75)90112-1. [DOI] [PubMed] [Google Scholar]
- Tsien R. W. Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res. 1977;8:363–420. [PubMed] [Google Scholar]
- VANE J. R. A sensitive method for the assay of 5-hydroxytryptamine. Br J Pharmacol Chemother. 1957 Sep;12(3):344–349. doi: 10.1111/j.1476-5381.1957.tb00146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
- Vapaatalo H., Parantainen J., Metsä-Ketelä T., Kangasaho M. Prostaglandins and cyclic nucleotides in cardiac function. Pol J Pharmacol Pharm. 1978 Mar-Jun;30(2-3):195–213. [PubMed] [Google Scholar]
- Vassort G., Ventura-Clapier R. Significance of creatine phosphate on the hypodynamic frog heart [proceedings]. J Physiol. 1977 Jul;269(1):86P–87P. [PubMed] [Google Scholar]
- de Boer J., Houtsmuller U. M., Vergroesen A. J. Inotropic effects of prostaglandins, fatty acids and adenosine phosphates on hypodynamic frog hearts. Prostaglandins. 1973 Jun;3(6):805–825. doi: 10.1016/0090-6980(73)90006-3. [DOI] [PubMed] [Google Scholar]