Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jul;304:277–296. doi: 10.1113/jphysiol.1980.sp013324

The action of isoprenaline on the smooth muscle of the guinea-pig taenia coli.

E Bülbring, A den Hertog
PMCID: PMC1282930  PMID: 7441538

Abstract

1. The beta-action of catecholamines on the smooth muscle of guinea-pig taenia coli was investigated by observing the effects of isoprenaline (2 X 10(-8)-7.2 X 10(-6) M) in the presence of an alpha-blocker, phentolamine (6.3 X 10(-6) M). Electrical and mechanical activity were recorded with the double sucrose gap method. Calcium and potassium fluxes were determined using the 45Ca and 42K isotopes. 2. Isoprenaline suppressed spontaneous spike generation, reduced the size of evoked phasic contractions, and caused a small hyperpolarization of the membrane without change in membrane resistance. These effects were abolished by a beta-blocker, propranolol (6.8 X 10(-6) M). 3. The hyperpolarization induced by isoprenaline was smaller in quiescent, nonstimulated muscle than in active, frequently stimulated preparations. It occurred with the same time course as the reduction in the size of evoked phasic contractions. Both effects were dose dependent and reached a maximum at 7.2 X 10(-7) M-isoprenaline. 4. Hyperpolarization by direct current application did not reduce the size of evoked phasic contractions until excitation threshold was reached. In the presence of isoprenaline, repolarization of the membrane to its original level by depolarizing current application did not restore the reduced phasic contractions to their original size. 5. The slopes of the current-voltage relation in the absence and presence of isoprenaline were parallel, confirming the absence of a change in membrane resistance. Isoprenaline also did not affect membrane resistance when applied in the modified ionic environments used. 6. In different external K concentrations (0.60-29.5 mM) the relationship between the size of the electrotonic potential and the magnitude of the isoprenaline-induced hyperpolarization was linear. A similar, direct relation was seen between isoprenaline hyperpolarization and membrane resistance when the latter was increased by lowering external chloride to 13.3 mM. 7. Excess Cao (7.5 mM) hyperpolarized the membrane and reduced membrane resistance, but the hyperpolarization by isoprenaline was larger than in normal solution, being inversely related to the membrane resistance. The hyperpolarization was directly related to the external Ca concentration, suggesting that the magnitude of the response to the beta-action might depend on the cytoplasmic Ca concentration. 8. In low external Na (18 mM-Nao) the beta-action was scarcely affected. Complete replacement of Na with choline increased membrane resistance, muscle tone and phasic contractions; in this condition the effects of isoprenaline were abolished. 9. When the Na pump was blocked by exposure to zero K, to ouabain, or to both simultaneously, isoprenaline remained highly effective. However, prolonged exposure to ouabain abolished the beta-action. 10. Isoprenaline (1.4 X 10(-6) M) increased 45Ca efflux by about 20%, while 45Ca influx was not changed, and 42K efflux remained constant. 11...

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURNSTOCK G. The action of adrenaline on excitability and membrane potential in the taenia coli of the guinea-pig and the effect of DNP on this action and on the action of acetylcholine. J Physiol. 1958 Aug 29;143(1):183–194. doi: 10.1113/jphysiol.1958.sp006052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bianchi C. P. Pharmacology of excitation-contraction coupling in muscle. Introduction: statement of the problem. Fed Proc. 1969 Sep-Oct;28(5):1624–1627. [PubMed] [Google Scholar]
  3. Bose D., Innes I. R. Isoprenaline-induced relaxation of smooth muscle not due to electrogenic sodium pumping. Can J Physiol Pharmacol. 1972 Apr;50(4):378–380. doi: 10.1139/y72-058. [DOI] [PubMed] [Google Scholar]
  4. Brading A. F. Analysis of the effluxes of sodium, potassium and chloride ions from smooth muscle in normal and hypertonic solutions. J Physiol. 1971 May;214(3):393–416. doi: 10.1113/jphysiol.1971.sp009440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brading A. F. Calcium-induced increase in membrane permeability in the guinea-pig taenia coli: evidence for involvement of a sodium-calcium exchange mechanism. J Physiol. 1978 Feb;275:65–84. doi: 10.1113/jphysiol.1978.sp012178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bülbring E., Kuriyama H. The action of catecholamines on guinea-pig taenia coli. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):115–121. doi: 10.1098/rstb.1973.0014. [DOI] [PubMed] [Google Scholar]
  7. Bülbring E., Tomita T. Calcium requirement for the alpha-action of catecholamines on guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1977 Jun 15;197(1128):271–284. doi: 10.1098/rspb.1977.0070. [DOI] [PubMed] [Google Scholar]
  8. Bülbring E., Tomita T. Effect of calcium, barium and manganese on the action of adrenaline in the smooth muscle of the guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):121–136. doi: 10.1098/rspb.1969.0015. [DOI] [PubMed] [Google Scholar]
  9. Bülbring E., Tomita T. Effects of Ca removal on the smooth muscle of the guinea-pig taenia coli. J Physiol. 1970 Sep;210(1):217–232. doi: 10.1113/jphysiol.1970.sp009205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bülbring E., Tomita T. Increase of membrane conductance by adrenaline in the smooth muscle of guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):89–102. doi: 10.1098/rspb.1969.0013. [DOI] [PubMed] [Google Scholar]
  11. Bülbring E., Tomita T. Suppression of spontaneous spike generation by catecholamines in the smooth muscle of the guinea-pig taenia coli. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):103–119. doi: 10.1098/rspb.1969.0014. [DOI] [PubMed] [Google Scholar]
  12. Bülbring E., Tomita T. The alpha-action of catecholamines on the guinea-pig taenia coli in K-free and Na-free solution and in the presence of ouabain. Proc R Soc Lond B Biol Sci. 1977 Jun 15;197(1128):255–269. doi: 10.1098/rspb.1977.0069. [DOI] [PubMed] [Google Scholar]
  13. Casteels R., Droogmans G., Hendrickx H. Electrogenic sodium pump in smooth muscle cells of the guinea-pig's taenia coli. J Physiol. 1971 Sep;217(2):297–313. doi: 10.1113/jphysiol.1971.sp009572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Casteels R., Kuriyama H. Membrane potential and ion content in the smooth muscle of the guinea-pig's taenia coli at different external potassium concentrations. J Physiol. 1966 May;184(1):120–130. doi: 10.1113/jphysiol.1966.sp007906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Casteels R. The action of ouabain on the smooth muscle cells of the guinea-pig's taenia coli. J Physiol. 1966 May;184(1):131–142. doi: 10.1113/jphysiol.1966.sp007907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Casteels R., Van Breemen C. Active and passive Ca2+ fluxes across cell membranes of the guinea-pig taenia coli. Pflugers Arch. 1975 Sep 9;359(3):197–207. doi: 10.1007/BF00587379. [DOI] [PubMed] [Google Scholar]
  18. DURBIN R. P., JENKINSON D. H. The calcium dependence of tension development in depolarized smooth muscle. J Physiol. 1961 Jun;157:90–96. doi: 10.1113/jphysiol.1961.sp006707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Diamond J., Marshall J. M. A comparison of the effects of various smooth muscle relaxants on the electrical and mechanical activity of rat uterus. J Pharmacol Exp Ther. 1969 Jul;168(1):21–30. [PubMed] [Google Scholar]
  20. Diamond J., Marshall J. M. Smooth muscle relaxants: dissociation between resting membrane potential and resting tension in rat myometrium. J Pharmacol Exp Ther. 1969 Jul;168(1):13–20. [PubMed] [Google Scholar]
  21. EDMAN K. A., SCHILD H. O. CALCIUM AND THE STIMULANT AND INHIBITORY EFFECTS OF ADRENALINE IN DEPOLARIZED SMOOTH MUSCLE. J Physiol. 1963 Nov;169:404–411. doi: 10.1113/jphysiol.1963.sp007265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goodford P. J. The calcium content of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1967 Sep;192(1):145–157. doi: 10.1113/jphysiol.1967.sp008293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Haylett D. G., Jenkinson D. H. The receptors concerned in the actions of catecholamines on glucose release, membrane potential and ion movements in guinea-pig liver. J Physiol. 1972 Sep;225(3):751–772. doi: 10.1113/jphysiol.1972.sp009967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jenkinson D. H., Morton I. K. The effect of noradrenaline on the permeability of depolarized intestinal smooth muscle to inorganic ions. J Physiol. 1967 Feb;188(3):373–386. doi: 10.1113/jphysiol.1967.sp008144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jenkinson D. H., Morton I. K. The role of alpha- and beta- adrenergic receptors in some actions of catecholamines on intestinal smooth muscle. J Physiol. 1967 Feb;188(3):387–402. doi: 10.1113/jphysiol.1967.sp008145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Katase T., Tomita T. Influences of sodium and calcium on the recovery process from potassium contracture in the guinea-pig taenia coli. J Physiol. 1972 Jul;224(2):489–500. doi: 10.1113/jphysiol.1972.sp009907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kroeger E. A., Marshall J. M. Beta-adrenergic effects on rat myometrium: mechanisms of membrane hyperpolarization. Am J Physiol. 1973 Dec;225(6):1339–1345. doi: 10.1152/ajplegacy.1973.225.6.1339. [DOI] [PubMed] [Google Scholar]
  29. Kuriyama H., Tomita T. The action potential in the smooth muscle of the guinea pig taenia coli and ureter studied by the double sucrose-gap method. J Gen Physiol. 1970 Feb;55(2):147–162. doi: 10.1085/jgp.55.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Magaribuchi T., Kuriyama H. Effects of noradrenaline and isoprenaline on the electrical and mechanical activities of guinea pig depolarized taenia coli. Jpn J Physiol. 1972 Jun;22(3):253–270. doi: 10.2170/jjphysiol.22.253. [DOI] [PubMed] [Google Scholar]
  31. Marshall J. M., Kroeger E. A. Adrenergic influences on uterine smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):135–148. doi: 10.1098/rstb.1973.0016. [DOI] [PubMed] [Google Scholar]
  32. Marshall J. M. Modulation of smooth muscle activity by catecholamines. Fed Proc. 1977 Sep;36(10):2450–2455. [PubMed] [Google Scholar]
  33. Reuter H., Blaustein M. P., Haeusler G. Na-Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):87–94. doi: 10.1098/rstb.1973.0011. [DOI] [PubMed] [Google Scholar]
  34. SCHATZMANN H. J., ACKERMANN H. [The action of strophanthin on intestinal muscle and its relation to the cation content of the medium]. Helv Physiol Pharmacol Acta. 1961;19:196–213. [PubMed] [Google Scholar]
  35. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schild H. O. The action of isoprenaline in the depolarized rat uterus. Br J Pharmacol Chemother. 1967 Nov;31(3):578–592. doi: 10.1111/j.1476-5381.1967.tb00422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Setekleiv J. Factors influencing the 42K efflux from the smooth muscle of guinea-pig taenia coli. J Physiol. 1967 Jan;188(2):39P–40P. [PubMed] [Google Scholar]
  38. Shibata N., Ohashi H., Takewaki T., Okada T. Calcium source for contractile response of guinea pig taenia caecum to carbachol in a calcium deficient, potassium rich solution. Jpn J Pharmacol. 1978 Aug;28(4):561–568. doi: 10.1254/jjp.28.561. [DOI] [PubMed] [Google Scholar]
  39. Tomita T., Yamamoto T. Effects of removing the external potassium on the smooth muscle of guinea-pig taenia coli. J Physiol. 1971 Feb;212(3):851–868. doi: 10.1113/jphysiol.1971.sp009360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watanabe H. Inhibitory mechanisms of isoprenaline in the guinea-pig taenia coli. Jpn J Pharmacol. 1976 Apr;26(2):217–225. doi: 10.1254/jjp.26.217. [DOI] [PubMed] [Google Scholar]
  41. Weisbrodt N. W., Hug C. C., Jr, Bass P. Separation of the effects of alpha and beta adrenergic receptor stimulation on taenia coli. J Pharmacol Exp Ther. 1969 Dec;170(2):272–280. [PubMed] [Google Scholar]
  42. van Breemen C., Casteels R. The use of Ca-EGTA in measurements of 45Ca efflux from smooth muscle. Pflugers Arch. 1974 Apr 22;348(3):239–245. doi: 10.1007/BF00587414. [DOI] [PubMed] [Google Scholar]
  43. van Breemen C., Farinas B. R., Casteels R., Gerba P., Wuytack F., Deth R. Factors controlling cytoplasmic Ca 2+ concentration. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):57–71. doi: 10.1098/rstb.1973.0009. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES