Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jul;304:373–387. doi: 10.1113/jphysiol.1980.sp013329

Effects of metabolic intermediates on sugar and amino acid uptake in rabbit renal tubules and brush border membranes.

I Kippen, J R Klinenberg, E M Wright
PMCID: PMC1282935  PMID: 7441540

Abstract

1. The effects of tricarboxylic acid cycle intermediates on the renal transport of alpha-methyl-D-glucoside and alpha-amino-isobutyric acid were examined using separated renal tubules of the rabbit. 2. The effect of citrate on alpha-methyl-D-glucoside and alpha-amino-isobutyric acid uptake was markedly biphasic with maximum stimulation of transport occurring at a citrate concentration of 0.64 mM. Biphasic effects were also apparent for L-malate, succinate, fumarate, alpha-ketoglutarate and oxaloacetate. 3. The route of uptake of alpha-methyl-D-glucoside into separated renal tubules is primarily across the brush border (luminal) membrane. 4. Tricarboxylic acid cycle intermediates produced significant stimulation of renal O2 consumption; however, the effects on O2 consumption were not biphasic suggesting that reduced stimulation of transport at high substrate concentration was not caused by a reduction in the supply of metabolic energy. 5. In purified renal cortical brush border membrane vesicles, citrate and alpha-ketoglutarate inhibited the uptake of alpha-methyl-D-glucoside and alpha-amino-isobutyric acid indicating that inhibition of their transport in respiring renal tubules by high concentrations of tricarboxylic acid cycle intermediates occurs via an effect at the membrane level.

Full text

PDF
373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  2. Beck J. C., Sacktor B. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles. J Biol Chem. 1978 Oct 25;253(20):7158–7162. [PubMed] [Google Scholar]
  3. Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
  4. Bihler I., Cybulsky R. Sugar transport at the basal and lateral aspect of the small intestinal cell. Biochim Biophys Acta. 1973 Mar 16;298(2):429–436. doi: 10.1016/0005-2736(73)90370-2. [DOI] [PubMed] [Google Scholar]
  5. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  6. Evers J., Murer H., Kinne R. Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta. 1976 Apr 5;426(4):598–615. doi: 10.1016/0005-2736(76)90124-3. [DOI] [PubMed] [Google Scholar]
  7. Fass S. J., Hammerman M. R., Sacktor B. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J Biol Chem. 1977 Jan 25;252(2):583–590. [PubMed] [Google Scholar]
  8. Fujita M., Matsui H., Nagano K., Nakao M. Asymmetric distribution of ouabain-sensitive ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1971 Apr 13;233(2):404–408. doi: 10.1016/0005-2736(71)90337-3. [DOI] [PubMed] [Google Scholar]
  9. Kimmich G. A., Carter-Su C., Randles J. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials. Am J Physiol. 1977 Nov;233(5):E357–E362. doi: 10.1152/ajpendo.1977.233.5.E357. [DOI] [PubMed] [Google Scholar]
  10. Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of p-aminohippuric acid, uric acid and glucose in highly purified rabbit renal brush border membranes. Biochim Biophys Acta. 1979 Sep 4;556(1):161–174. doi: 10.1016/0005-2736(79)90428-0. [DOI] [PubMed] [Google Scholar]
  11. Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3397–3400. doi: 10.1073/pnas.76.7.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kippen I., Klinenberg J. R. Effects of renal fuels on uptake of PAH and uric acid by separated renal tubules of the rabbit. Am J Physiol. 1978 Aug;235(2):F137–F141. doi: 10.1152/ajprenal.1978.235.2.F137. [DOI] [PubMed] [Google Scholar]
  13. Kippen I., Nakata N., Klinenberg J. R. Uptake of uric acid by separated renal tubules of the rabbit. I. Characteristics of transport. J Pharmacol Exp Ther. 1977 Apr;201(1):218–225. [PubMed] [Google Scholar]
  14. MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
  15. Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
  16. Murer H., Sigrist-Nelson K., Hopfer U. On the mechanism of sugar and amino acid interaction in intestinal transport. J Biol Chem. 1975 Sep 25;250(18):7392–7396. [PubMed] [Google Scholar]
  17. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROSENBERG L. E., BLAIR A., SEGAL S. Transport of amino acids by slices of rat-kidney cortex. Biochim Biophys Acta. 1961 Dec 23;54:479–488. doi: 10.1016/0006-3002(61)90088-9. [DOI] [PubMed] [Google Scholar]
  19. Segal S., Rosenhagen M., Rea C. Developmental and other characteristics of -methyl-D-glucoside transport by rat kidney cortex slices. Biochim Biophys Acta. 1973 Jan 26;291(2):519–530. doi: 10.1016/0005-2736(73)90503-8. [DOI] [PubMed] [Google Scholar]
  20. Turner R. J., Silverman M. Sugar uptake into brush border vesicles from dog kidney. I. Specificity. Biochim Biophys Acta. 1978 Feb 21;507(2):305–321. doi: 10.1016/0005-2736(78)90425-x. [DOI] [PubMed] [Google Scholar]
  21. Turner R. J., Silverman M. Sugar uptake into brush border vesicles from normal human kidney. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2825–2829. doi: 10.1073/pnas.74.7.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ullrich K. J. Renal tubular mechanisms of organic solute transport. Kidney Int. 1976 Feb;9(2):134–148. doi: 10.1038/ki.1976.17. [DOI] [PubMed] [Google Scholar]
  23. Weidemann M. J., Hems D. A., Krebs H. A. Effects of added nucleotides on renal carbohydrate metabolism. Biochem J. 1969 Oct;115(1):1–10. doi: 10.1042/bj1150001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES