Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Jul;304:519–527. doi: 10.1113/jphysiol.1980.sp013340

Inhibitory action of DIDS on chloride transport across the amphibian cornea.

P J Bentley, M C McGahan
PMCID: PMC1282946  PMID: 6777484

Abstract

1. DIDS (4,4'-diisothiocyano-2,2'-stilbene disulphonic acid) reduced the CI Isc across the toad's (Bufo marinus) cornea. It acted on either the aqueous or tear side and these effects were additive. 2. The reduction in the Isc was equivalent to the decline in the undirectional flux of Cl from the aqueous to the tear side. The Cl flux from tear to aqueous was not changed. 3. DIDS did not change transmural Na transport. 4. The action of the diuretic bumetanide, which also inhibits Cl transport was additive to that of DIDS when both compounds were present on the aqueous though not when they were on the tear side of the cornea. 5. The results are consistent with the role of a Cl-/anion exchange mechanism in active Cl transport across the cornea. 6. A hypothesis regarding the interactions and site of action of bumetanide in relation to that of DIDS, and the Cl transport process, is proposed.

Full text

PDF
519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodsky W. A., Durham J., Ehrenspeck G. The effects of a disulphonic stilbene on chloride and bicarbonate transport in the turtle bladder. J Physiol. 1979 Feb;287:559–573. doi: 10.1113/jphysiol.1979.sp012677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burg M., Stoner L., Cardinal J., Green N. Furosemide effect on isolated perfused tubules. Am J Physiol. 1973 Jul;225(1):119–124. doi: 10.1152/ajplegacy.1973.225.1.119. [DOI] [PubMed] [Google Scholar]
  3. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  5. Candia O. A., Bentley P. J., Cook P. I. Stimulation by amphotericin B of active Na transport across amphibian cornea. Am J Physiol. 1974 Jun;226(6):1438–1444. doi: 10.1152/ajplegacy.1974.226.6.1438. [DOI] [PubMed] [Google Scholar]
  6. Carrière S., Dandavino R. Bumetanide, a new loop diuretic. Clin Pharmacol Ther. 1976 Oct;20(4):424–438. doi: 10.1002/cpt1976204424. [DOI] [PubMed] [Google Scholar]
  7. Cousin J. L., Motais R., Sola F. Transmembrane exchange of chloride with bicarbonate ion in mammalian red blood cells: evidence for a sulphonamide-sensitive "carrier". J Physiol. 1975 Dec;253(2):385–399. doi: 10.1113/jphysiol.1975.sp011195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cousin J. L., Motais R. The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells. J Physiol. 1976 Mar;256(1):61–80. doi: 10.1113/jphysiol.1976.sp011311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hodson S. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions. J Physiol. 1974 Jan;236(2):271–302. doi: 10.1113/jphysiol.1974.sp010435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klyce S. D., Wong R. K. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J Physiol. 1977 Apr;266(3):777–799. doi: 10.1113/jphysiol.1977.sp011793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McGahan M. C., Yorio T., Bentley P. J. The mode of action of bumetanide: inhibition of chloride transport across the amphibian cornea. J Pharmacol Exp Ther. 1977 Oct;203(1):97–102. [PubMed] [Google Scholar]
  12. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  13. Zadunaisky J. A. Active transport of chloride in frog cornea. Am J Physiol. 1966 Aug;211(2):506–512. doi: 10.1152/ajplegacy.1966.211.2.506. [DOI] [PubMed] [Google Scholar]
  14. Zeuthen T., Ramos M., Ellory J. C. Inhibition of active chloride transport by piretanide. Nature. 1978 Jun 22;273(5664):678–680. doi: 10.1038/273678a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES