Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Sep;306:127–149. doi: 10.1113/jphysiol.1980.sp013388

The contribution of potassium accumulation to outward currents in frog atrium.

H Brown, D DiFrancesco, D Noble, S Noble
PMCID: PMC1282997  PMID: 7463357

Abstract

1. Voltage-clamp experiments on frog atrial muscle were designed to distinguish effects due to K accumulation in extracellular spaces from those due to activation of K conductance mechanisms in the membrane. 2. The set of instantaneous current-voltage relations obtained at various external K concentrations following depolarization to about -10 mV for several seconds was found to be quite different from that obtained before the depolarization. Hence the process of increasing the extracellular K concentration cannot account for all the time-dependent changes in outward current during depolarization. 3. Although the instantaneous current-voltage relations obtained at different values of external K concentration before prolonged depolarization show the cross-over phenomenon (Noble, 1965), those obtained at the end of the depolarization did not show this feature. It is concluded that the current-voltage relations for the channels conducting the time-dependent K current do not show cross-over. 4. These results were used to construct a model involving both K activation and K accumulation. This model successfully reproduces the appearance of a very slow component in outward current decay tails which, when subtracted by semi-exponential curve-stripping leaves a component with the real time constant of conductance change. The model does not however reproduce the appearance of a fast decaying component without adding a second conductance mechanism, or assuming non-exponential decay of a single conductance mechanism. 5. It is therefore suggested that i chi, fast is not a perturbation of i chi, slow or of iK1 by the process of K accumulation. This conclusion is reinforced by the results of experiments showing that the relative magnitude of i chi, fast is not greatly changed by substantially increasing the external K concentration in order to reduce the proportionate effect of K accumulation on the K concentration.

Full text

PDF
127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attwell D., Eisner D., Cohen I. Voltage clamp and tracer flux data: effects of a restricted extra-cellular space. Q Rev Biophys. 1979 Aug;12(3):213–261. doi: 10.1017/s0033583500005448. [DOI] [PubMed] [Google Scholar]
  2. Brown H. F., Clark A., Noble S. J. Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol. 1976 Jul;258(3):547–577. doi: 10.1113/jphysiol.1976.sp011435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown H. F., Clark A., Noble S. J. Identification of the pace-maker current in frog atrium. J Physiol. 1976 Jul;258(3):521–545. doi: 10.1113/jphysiol.1976.sp011434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown H. F., Giles W., Noble S. J. Membrane currents underlying activity in frog sinus venosus. J Physiol. 1977 Oct;271(3):783–816. doi: 10.1113/jphysiol.1977.sp012026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown H. F., Noble S. J. Membrane currents underlying delayed rectification and pace-maker activity in frog atrial muscle. J Physiol. 1969 Oct;204(3):717–736. doi: 10.1113/jphysiol.1969.sp008940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown H., Difrancesco D., Noble S. Cardiac pacemaker oscillation and its modulation by autonomic transmitters. J Exp Biol. 1979 Aug;81:175–204. doi: 10.1242/jeb.81.1.175. [DOI] [PubMed] [Google Scholar]
  7. Cohen I., Noble D., Ohba M., Ojeda C. Action of salicylate ions on the electrical properties of sheep cardiac Purkinje fibres. J Physiol. 1979 Dec;297(0):163–185. doi: 10.1113/jphysiol.1979.sp013033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiFrancesco D., McNaughton P. A. The effects of calcium on outward membrane currents in the cardiac Purkinje fibre. J Physiol. 1979 Apr;289:347–373. doi: 10.1113/jphysiol.1979.sp012741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiFrancesco D., Noble D. The time course of potassium current following potassium accumulation in frog atrium: analytical solutions using a linear approximation. J Physiol. 1980 Sep;306:151–173. doi: 10.1113/jphysiol.1980.sp013389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DiFrancesco D., Noma A., Trautwein W. Kinetics and magnitude of the time-dependent potassium current in the rabbit sinoatrial node: effect of external potassium. Pflugers Arch. 1979 Sep;381(3):271–279. doi: 10.1007/BF00583259. [DOI] [PubMed] [Google Scholar]
  11. DiFrancesco D., Ohba M., Ojeda C. Measurement and significance of the reversal potential for the pace-maker current (iK2) in sheep Purkinje fibres. J Physiol. 1979 Dec;297(0):135–162. doi: 10.1113/jphysiol.1979.sp013032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McDonald T. F., Trautwein W. The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol. 1978 Jan;274:217–246. doi: 10.1113/jphysiol.1978.sp012144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ojeda C., Rougier O. Kinetic analysis of the delayed outward currents in frog atrium. Existence of two types of preparation. J Physiol. 1974 May;239(1):51–73. doi: 10.1113/jphysiol.1974.sp010555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophys J. 1976 Jan;16(1):27–41. doi: 10.1016/S0006-3495(76)85660-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES