Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Sep;306:283–306. doi: 10.1113/jphysiol.1980.sp013397

End-plate channel opening and the kinetics of quinacrine (mepacrine) block.

P R Adams, A Feltz
PMCID: PMC1283006  PMID: 6257897

Abstract

1. The effects of quinacrine on the relaxation of the agonist-induced currents in response to a voltage step were investigated at voltage clamped frog end-plates. A fast perfusion technique allowed the application of known concentrations of the agonist acetylcholine (ACh) or carbachol to end-plate viewed with Nomarski optics. 2. In the presence of quinacrine, and in response to a hyperpolarizing voltage jump, an agonist-induced current shows a fast initial relaxational increase and then relaxes slowly back to a new equilibrium level. 3. The slow relaxation can be described by a single exponential with a time constant tau s . tau s gets smaller at increasing quinacrine concentrations (0--2 microM) and the decay rate constant, 1/tau s, increases linearly with quinacrine concentration. Increasing agonist concentration reduces tau s, in a manner dependent on the nature of the agonist. Tau s is markedly lengthened at more hyperpolarized potential, but this voltage effect gets less at higher concentrations of agonist. 4. These data suggest a slow voltage dependent blockage of open end-plate channels by quinacrine. The binding rate constant of quinacrine is estimated as 10(8) M-1 s-1, and the voltage dependent, backward rate constant, as 5 s-1 at -60 mV and 1 s-1 at -140 mV. These values are in fair agreement with those obtained from the analysis presented in the preceding paper. 5. The agonist concentration dependence of the blocking kinetics is compatible with a simple model for channel opening. In this model, independent sequential binding of two agonist molecules leads to an isomerization of the receptor. The intrinsic binding constant of ACh is estimated to be around 20 microM, and for carbachol around 200 microM. Distinct isomerization constants could lead to a maximal activation of 70% of the available channels by ACh, and only 40% by carbachol. 6. An example of a possible interaction in between quinacrine block and desensitization is shown. At the break of an hyperpolarizing jump which has increased quinacrine blockade, a transient increase in the synaptic current is observed with apparently a temporary reduction of the desensitization.

Full text

PDF
283

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. An analysis of the dose-response curve at voltage-clamped frog-endplates. Pflugers Arch. 1975 Oct 28;360(2):145–153. doi: 10.1007/BF00580537. [DOI] [PubMed] [Google Scholar]
  2. Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams P. R., Feltz A. Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane. Nature. 1977 Oct 13;269(5629):609–611. doi: 10.1038/269609a0. [DOI] [PubMed] [Google Scholar]
  4. Adams P. R., Feltz A. Quinacrine (mepacrine) action at frog end-plate. J Physiol. 1980 Sep;306:261–281. doi: 10.1113/jphysiol.1980.sp013396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Adams P. R. Kinetics of agonist conductance changes during hyperolarization at frog endplates. Br J Pharmacol. 1975 Feb;53(2):308–310. doi: 10.1111/j.1476-5381.1975.tb07364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Adams P. R. Relaxation experiments using bath-applied suberyldicholine. J Physiol. 1977 Jun;268(2):271–289. doi: 10.1113/jphysiol.1977.sp011857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Adams P. R., Sakmann B. A comparison of current-voltage relations for full and partial agonists. J Physiol. 1978 Oct;283:621–644. doi: 10.1113/jphysiol.1978.sp012523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Adams P. R. Voltage dependence of agonist responses at voltage-clamped frog endplates. Pflugers Arch. 1976 Jan 30;361(2):145–151. doi: 10.1007/BF00583458. [DOI] [PubMed] [Google Scholar]
  9. Albuquerque E. X., Kuba K., Daly J. Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: a quantitative analysis of the end-plate current. J Pharmacol Exp Ther. 1974 May;189(2):513–524. [PubMed] [Google Scholar]
  10. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Catterall W. A. Sodium transport by the acetylcholine receptor of cultured muscle cells. J Biol Chem. 1975 Mar 10;250(5):1776–1781. [PubMed] [Google Scholar]
  12. Colquhoun D., Dreyer F., Sheridan R. E. The actions of tubocurarine at the frog neuromuscular junction. J Physiol. 1979 Aug;293:247–284. doi: 10.1113/jphysiol.1979.sp012888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colquhoun D., Range H. P. Effects of inhibitors of the binding of iodinated alpha-bungarotoxin to acetylcholine receptors in rat muscle. Mol Pharmacol. 1976 Jul;12(4):519–535. [PubMed] [Google Scholar]
  14. Creese R., Franklin G. I., Mitchell L. D. Sodium entry in rat diaphragm induced by depolarizing drugs. J Physiol. 1977 Nov;272(2):295–316. doi: 10.1113/jphysiol.1977.sp012045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dionne V. E., Steinbach J. H., Stevens C. F. An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junctions. J Physiol. 1978 Aug;281:421–444. doi: 10.1113/jphysiol.1978.sp012431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dionne V. E., Stevens C. F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J Physiol. 1975 Oct;251(2):245–270. doi: 10.1113/jphysiol.1975.sp011090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dreyer F., Peper K., Sterz R. Determination of dose-response curves by quantitative ionophoresis at the frog neuromuscular junction. J Physiol. 1978 Aug;281:395–419. doi: 10.1113/jphysiol.1978.sp012430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Elliot J., Raftery M. A. Interactions of perhydrohistrionicotoxin with postsynaptic membranes. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1347–1353. doi: 10.1016/s0006-291x(77)80127-7. [DOI] [PubMed] [Google Scholar]
  19. Grünhagen H. H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. IV. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane-bound state. J Mol Biol. 1976 Sep 25;106(3):497–516. doi: 10.1016/0022-2836(76)90249-7. [DOI] [PubMed] [Google Scholar]
  20. Grünhagen H. H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. V. Qualitative correlation between pharmacological effects and equilibration processes of the cholinergic receptor protein as revealed by the structural probe quinacrine. J Mol Biol. 1976 Sep 25;106(3):517–535. doi: 10.1016/0022-2836(76)90250-3. [DOI] [PubMed] [Google Scholar]
  21. Grünhagen H. H., Iwatsubo M., Changeux J. P. Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. Eur J Biochem. 1977 Oct 17;80(1):225–242. doi: 10.1111/j.1432-1033.1977.tb11875.x. [DOI] [PubMed] [Google Scholar]
  22. Jenkinson D. H., Terrar D. A. Influence of chloride ions on changes in membrane potential during prolonged application of carbachol to frog skeletal muscle. Br J Pharmacol. 1973 Feb;47(2):363–376. doi: 10.1111/j.1476-5381.1973.tb08334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krodel E. K., Beckman R. A., Cohen J. B. Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated from Torpedo marmorata electric tissue. Mol Pharmacol. 1979 Mar;15(2):294–312. [PubMed] [Google Scholar]
  25. Magleby K. L., Stevens C. F. The effect of voltage on the time course of end-plate currents. J Physiol. 1972 May;223(1):151–171. doi: 10.1113/jphysiol.1972.sp009839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marty A., Neild T., Ascher P. Voltage sensitivity of acetylcholine currents in Aplysia neurones in the presence of curare. Nature. 1976 Jun 10;261(5560):501–503. doi: 10.1038/261501a0. [DOI] [PubMed] [Google Scholar]
  27. Marty A. Noise and relaxation studies of acetylcholine induced currents in the presence of procaine. J Physiol. 1978 May;278:237–250. doi: 10.1113/jphysiol.1978.sp012301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miledi R., Molinoff P., Potter L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971 Feb 19;229(5286):554–557. doi: 10.1038/229554a0. [DOI] [PubMed] [Google Scholar]
  29. Moreau M., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. I. Pharmacological properties of the electroplaque. J Mol Biol. 1976 Sep 25;106(3):457–467. doi: 10.1016/0022-2836(76)90246-1. [DOI] [PubMed] [Google Scholar]
  30. Neher E., Sakmann B. Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2140–2144. doi: 10.1073/pnas.72.6.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Popot J. L., Sugiyama H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. II. The permeability response of the receptor-rich membrane fragments to cholinergic agonists in vitro. J Mol Biol. 1976 Sep 25;106(3):469–483. doi: 10.1016/0022-2836(76)90247-3. [DOI] [PubMed] [Google Scholar]
  32. Raftery M. A., Vandlen R. L., Reed K. L., Lee T. Characterization of Torpedo californica acetylcholine receptor: its subunit composition and ligand-binding properties. Cold Spring Harb Symp Quant Biol. 1976;40:193–202. doi: 10.1101/sqb.1976.040.01.021. [DOI] [PubMed] [Google Scholar]
  33. Rang H. P. Acetylcholine receptors. Q Rev Biophys. 1974 Jul;7(3):283–399. doi: 10.1017/s0033583500001463. [DOI] [PubMed] [Google Scholar]
  34. Rang H. P. Allosteric mechanisms at neuromuscular junctions. Neurosci Res Program Bull. 1973 Jun;11(3):220–224. [PubMed] [Google Scholar]
  35. Scubon-Mulieri B., Parsons R. L. Desensitization and recovery at the frog neuromuscular junction. J Gen Physiol. 1977 Apr;69(4):431–447. doi: 10.1085/jgp.69.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sheridan R. E., Lester H. A. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques: a study of neurally evoked postsynaptic currents and of voltage-jump relaxations. J Gen Physiol. 1977 Aug;70(2):187–219. [PMC free article] [PubMed] [Google Scholar]
  37. Sheridan R. E., Lester H. A. Relaxation measurements on the acetylcholine receptor. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3496–3500. doi: 10.1073/pnas.72.9.3496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tsai M. C., Oliveira A. C., Albuquerque E. X., Eldefrawi M. E., Eldefrawi A. T. Mode of action of quinacrine on the acetylcholine receptor ionic channel complex. Mol Pharmacol. 1979 Sep;16(2):382–392. [PubMed] [Google Scholar]
  39. Vigny M., Bon S., Massoulié J., Leterrier F. Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, torpedo, rat and chicken. Eur J Biochem. 1978 Apr 17;85(2):317–323. doi: 10.1111/j.1432-1033.1978.tb12241.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES