Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Sep;306:431–443. doi: 10.1113/jphysiol.1980.sp013405

Chloride-bicarbonate exchange in human red cells measured using a stopped flow apparatus.

A Lambert, A G Lowe
PMCID: PMC1283014  PMID: 7463368

Abstract

1. A new stopped-flow apparatus has been used to measure the exchange of intracellular chloride and extracellular bicarbonate across the human erythrocyte membrane at 37 degrees C. 2. The concentration dependence of the activation of the anion exchange system by extracellular bicarbonate was consistent with the existence of a saturable membrane-carrier. Analysis of the results assuming Michaelis--Menten kinetics indicated a Vmax for chloride--bicarbonate exchange of 73 . 4 +/- 14 . 4 mol. (3 x 10(13) cells.min)-1 and Km for bicarbonate of 11 . 1 +/- 2 . 8 mM at 37 degrees C (pH 7 . 1). 3. Correction of the directly computed values of Vmax for incomplete saturation of the carrier by intracellular chloride and the inhibitory effects of intracellular bicarbonate and extracellular chloride gave a Vmax of 157 +/- 43 . 8 mol (3 x 10(13) cells.min)-1 and a Km of 15 . 5 +/- 5 . 2 mM-bicarbonate at 37 degrees C. 4. Comparison of Vmax obtained at 37 and 10 degrees C indicates that the activation energy for chloride--bicarbonate exchange in this temperature range is 18 . 7 --19 . 6 kcal.mol-1 depending on whether corrected or uncorrected values are used. 5. Extracellular furosemide inhibited chloride--bicarbonate exchange with a KI of 0 . 12 microM assuming competition between furosemide and bicarbonate and 0 . 17 microM assuming non-competitive inhibition. 6. Extracellular chloride also inhibited chloride--bicarbonate exchange but the kinetics of inhibition were complex.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGER R. L., STODDART L. C. COMBINED CALORIMETER AND SPECTROPHOTOMETER FOR OBSERVING BIOLOGICAL REACTIONS. Rev Sci Instrum. 1965 Jan;36:78–84. doi: 10.1063/1.1719332. [DOI] [PubMed] [Google Scholar]
  2. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burg M., Stoner L., Cardinal J., Green N. Furosemide effect on isolated perfused tubules. Am J Physiol. 1973 Jul;225(1):119–124. doi: 10.1152/ajplegacy.1973.225.1.119. [DOI] [PubMed] [Google Scholar]
  5. Chow E. I., Crandall E. D., Forster R. E. Kinetics of bicarbonate-chloride exchange across the human red blood cell membrane. J Gen Physiol. 1976 Dec;68(6):633–652. doi: 10.1085/jgp.68.6.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crandall E. D., DeLong J. A pressure- and flow-insensitive reference electrode liquid junction. J Appl Physiol. 1976 Jul;41(1):125–128. doi: 10.1152/jappl.1976.41.1.125. [DOI] [PubMed] [Google Scholar]
  7. Crandall E. D., Klocke R. A., Forster R. E. Hydroxyl ion movements across the human erythrocyte membrane. Measurement of rapid pH changes in red cell suspensions. J Gen Physiol. 1971 Jun;57(6):664–683. doi: 10.1085/jgp.57.6.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE DUVE C. A spectrophotometric method for the simultaneous determination of myoglobin and hemoglobin in extracts of human muscle. Acta Chem Scand. 1948;2(3):264–289. doi: 10.3891/acta.chem.scand.02-0264. [DOI] [PubMed] [Google Scholar]
  9. Dalmark M. Chloride transport in human red cells. J Physiol. 1975 Aug;250(1):39–64. doi: 10.1113/jphysiol.1975.sp011042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Weer P., Lowe A. G. Myokinase equilibrium. An enzymatic method for the determination of stability constants of magnesium complexes with adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate in media of high ionic strength. J Biol Chem. 1973 Apr 25;248(8):2829–2835. [PubMed] [Google Scholar]
  13. Funder J., Wieth J. O. Trapping of sodium, potassium, sucrose, and albumin in the packed cell column of the hematocrit. Acta Physiol Scand. 1967 Sep;71(1):105–112. doi: 10.1111/j.1748-1716.1967.tb03715.x. [DOI] [PubMed] [Google Scholar]
  14. Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lambert A., Lowe A. G. Chloride/bicarbonate exchange in human erythrocytes. J Physiol. 1978 Feb;275:51–63. doi: 10.1113/jphysiol.1978.sp012177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rossi-Bernardi L., Berger R. L. The rapid measurement of pH by the glass electrode. The kinetics of dehydration of carbonic acid at 25 degrees and 37 degreesl. J Biol Chem. 1968 Mar 25;243(6):1297–1302. [PubMed] [Google Scholar]
  17. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  18. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES