Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Sep;306:463–472. doi: 10.1113/jphysiol.1980.sp013407

Potassium transfer from brain to blood during sustained hyponatraemia in the calf.

R M Gardiner
PMCID: PMC1283016  PMID: 7463370

Abstract

1. The effects of hyponatraemia on cerebral blood flow, oxidative metabolism, and transfer of Na and K from the brain--c.s.f. compartment to blood have been examined in anaesthetized calves 2--6 weeks after birth. 2. Dilutional hyponatraemia was produced by administration of a long-acting antidiuretic hormone analogue (desmopressin) and the infusion of hexose solutions of various concentrations. Cerebral blood flow was measured using a hydrogen clearance technique, and metabolism and cation transfer quantified by simultaneous determination of arterio-cerebral venous concentration differences. 3. Sustained hyposmolar hyponatraemia (plasma osmolality, 232 +/- 1 m-osmole/kg; plasma Na, 117 . 1 +/- 0 . 5 m-mole/l.) was associated with a fall in cerebral blood flow, and increase in measured net transfer of K from the brain-c.s.f. compartment to the circulation. C.s.f. Na concentration and osmolality were both decreased. 4. No alterations in these variables occurred during sustained isosmolar hyponatraemia (plasma osmolality, 284 +/- 2 m-osmole/kg; plasma Na, 119 . 9 +/- 0 . 2 m-mole/l). 5. The results are discussed in relation to the route, mechanism and time course of K loss from brain during hyponatraemia.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES A., 3rd, ISOM J. B., NESBETT F. B. EFFECTS OF OSMOTIC CHANGES ON WATER AND ELECTROLYTES IN NERVOUS TISSUE. J Physiol. 1965 Mar;177:246–262. doi: 10.1113/jphysiol.1965.sp007590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. AMES A., 3rd, SAKANOUE M., ENDO S. NA, K, CA, MG, AND C1 CONCENTRATIONS IN CHOROID PLEXUS FLUID AND CISTERNAL FLUID COMPARED WITH PLASMA ULTRAFILTRATE. J Neurophysiol. 1964 Jul;27:672–681. doi: 10.1152/jn.1964.27.4.672. [DOI] [PubMed] [Google Scholar]
  3. Bito L. Z., Davson H. Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966 Mar;14(3):264–280. doi: 10.1016/0014-4886(66)90114-2. [DOI] [PubMed] [Google Scholar]
  4. Bradbury M. W., Davson H. The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965 Nov;181(1):151–174. doi: 10.1113/jphysiol.1965.sp007752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradbury M. W., Kleeman C. R. Stability of the potassium content of cerebrospinal fluid and brain. Am J Physiol. 1967 Aug;213(2):519–528. doi: 10.1152/ajplegacy.1967.213.2.519. [DOI] [PubMed] [Google Scholar]
  6. Bradbury M. W., Kleeman C. R. The effect of chronic osmotic disturbance on the concentrations of cations in cerebrospinal fluid. J Physiol. 1969 Sep;204(1):181–193. doi: 10.1113/jphysiol.1969.sp008907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradbury M. W., Segal M. B., Wilson J. Transport of potassium at the blood-brain barrier. J Physiol. 1972 Mar;221(3):617–632. doi: 10.1113/jphysiol.1972.sp009771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradbury M. W., Stulcová B. Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J Physiol. 1970 Jun;208(2):415–430. doi: 10.1113/jphysiol.1970.sp009128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVSON H. A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J Physiol. 1955 Jul 28;129(1):111–133. doi: 10.1113/jphysiol.1955.sp005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DODGE P. R., CRAWFORD J. D., PROBST T. H. Studies in experimental water intoxication. Arch Neurol. 1960 Nov;3:513–529. doi: 10.1001/archneur.1960.00450050033005. [DOI] [PubMed] [Google Scholar]
  11. Dila C. J., Pappius H. M. Cerebral water and electrolytes. An experimental model of inappropriate secretion of antidiuretic hormone. Arch Neurol. 1972 Jan;26(1):85–90. doi: 10.1001/archneur.1972.00490070103013. [DOI] [PubMed] [Google Scholar]
  12. Ericsson B. F. Effect of vasopressin on the distribution of cardiac output and organ blood flow in the anesthetized dog. Acta Chir Scand. 1971;137(8):729–738. [PubMed] [Google Scholar]
  13. Fieschi C., Bozzao L., Agnoli A. Regional clearance of hydrogen as a measure of cerebral blood flow. Acta Neurol Scand Suppl. 1965;14:46–52. doi: 10.1111/j.1600-0404.1965.tb01952.x. [DOI] [PubMed] [Google Scholar]
  14. Firth J. A. Cytochemical localization of the K+ regulation interface between blood and brain. Experientia. 1977 Aug 15;33(8):1093–1094. doi: 10.1007/BF01945990. [DOI] [PubMed] [Google Scholar]
  15. Gardiner R. M. The effect of feeding on cerebral blood flow and oxygen consumption in the new-born calf. J Physiol. 1980 Apr;301:429–438. doi: 10.1113/jphysiol.1980.sp013215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gazitùa S., Scott J. B., Swindall B., Haddy F. J. Resistance responses to local changes in plasma osmolality in three vascular beds. Am J Physiol. 1971 Feb;220(2):384–391. doi: 10.1152/ajplegacy.1971.220.2.384. [DOI] [PubMed] [Google Scholar]
  17. Goldstein G. W. Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J Physiol. 1979 Jan;286:185–195. doi: 10.1113/jphysiol.1979.sp012613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KATZMAN R., LEIDERMAN P. Brain potassium exchange in normal adult and immature rats. Am J Physiol. 1953 Nov;175(2):263–270. doi: 10.1152/ajplegacy.1953.175.2.263. [DOI] [PubMed] [Google Scholar]
  19. LINDEN R. J., LEDSOME J. R., NORMAN J. SIMPLE METHODS FOR THE DETERMINATION OF THE CONCENTRATIONS OF CARBON DIOXIDE AND OXYGEN IN BLOOD. Br J Anaesth. 1965 Feb;37:77–88. doi: 10.1093/bja/37.2.77. [DOI] [PubMed] [Google Scholar]
  20. Rosenberg H. M., Shank B. B., Gregg E. C. Volume changes of mammalian cells subjected to hypotonic solutions in vitro: evidence for the requirement of a sodium pump for the shrinking phase. J Cell Physiol. 1972 Aug;80(1):23–32. doi: 10.1002/jcp.1040800104. [DOI] [PubMed] [Google Scholar]
  21. Rymer M. M., Fishman R. A. Protective adaptation of brain to water intoxication. Arch Neurol. 1973 Jan;28(1):49–54. doi: 10.1001/archneur.1973.00490190067009. [DOI] [PubMed] [Google Scholar]
  22. Sjöquist P. O., Bjellin L., Carter A. M. Effect of 1-deamino-6-carba- (8-arginine)- vasopressin on organ blood flow in the female guinea pig. Eur J Pharmacol. 1977 Nov 1;46(1):25–30. doi: 10.1016/0014-2999(77)90140-6. [DOI] [PubMed] [Google Scholar]
  23. WOODBURY D. M. Effect of acute hyponatremia on distribution of water and electrolytes in various tissues of the rat. Am J Physiol. 1956 May;185(2):281–286. doi: 10.1152/ajplegacy.1956.185.2.281. [DOI] [PubMed] [Google Scholar]
  24. Wahl M., Kuschinsky W., Bosse O., Thurau K. Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. A microapplication study. Circ Res. 1973 Feb;32(2):162–169. doi: 10.1161/01.res.32.2.162. [DOI] [PubMed] [Google Scholar]
  25. Wasterlain C. G., Posner J. B. Cerebral edema in water intoxication. I. Clinical and chemical observations. Arch Neurol. 1968 Jul;19(1):71–78. doi: 10.1001/archneur.1968.00480010089007. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES