Abstract
1. The effects of hyponatraemia on cerebral blood flow, oxidative metabolism, and transfer of Na and K from the brain--c.s.f. compartment to blood have been examined in anaesthetized calves 2--6 weeks after birth. 2. Dilutional hyponatraemia was produced by administration of a long-acting antidiuretic hormone analogue (desmopressin) and the infusion of hexose solutions of various concentrations. Cerebral blood flow was measured using a hydrogen clearance technique, and metabolism and cation transfer quantified by simultaneous determination of arterio-cerebral venous concentration differences. 3. Sustained hyposmolar hyponatraemia (plasma osmolality, 232 +/- 1 m-osmole/kg; plasma Na, 117 . 1 +/- 0 . 5 m-mole/l.) was associated with a fall in cerebral blood flow, and increase in measured net transfer of K from the brain-c.s.f. compartment to the circulation. C.s.f. Na concentration and osmolality were both decreased. 4. No alterations in these variables occurred during sustained isosmolar hyponatraemia (plasma osmolality, 284 +/- 2 m-osmole/kg; plasma Na, 119 . 9 +/- 0 . 2 m-mole/l). 5. The results are discussed in relation to the route, mechanism and time course of K loss from brain during hyponatraemia.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES A., 3rd, ISOM J. B., NESBETT F. B. EFFECTS OF OSMOTIC CHANGES ON WATER AND ELECTROLYTES IN NERVOUS TISSUE. J Physiol. 1965 Mar;177:246–262. doi: 10.1113/jphysiol.1965.sp007590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AMES A., 3rd, SAKANOUE M., ENDO S. NA, K, CA, MG, AND C1 CONCENTRATIONS IN CHOROID PLEXUS FLUID AND CISTERNAL FLUID COMPARED WITH PLASMA ULTRAFILTRATE. J Neurophysiol. 1964 Jul;27:672–681. doi: 10.1152/jn.1964.27.4.672. [DOI] [PubMed] [Google Scholar]
- Bito L. Z., Davson H. Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966 Mar;14(3):264–280. doi: 10.1016/0014-4886(66)90114-2. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W., Davson H. The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965 Nov;181(1):151–174. doi: 10.1113/jphysiol.1965.sp007752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradbury M. W., Kleeman C. R. Stability of the potassium content of cerebrospinal fluid and brain. Am J Physiol. 1967 Aug;213(2):519–528. doi: 10.1152/ajplegacy.1967.213.2.519. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W., Kleeman C. R. The effect of chronic osmotic disturbance on the concentrations of cations in cerebrospinal fluid. J Physiol. 1969 Sep;204(1):181–193. doi: 10.1113/jphysiol.1969.sp008907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradbury M. W., Segal M. B., Wilson J. Transport of potassium at the blood-brain barrier. J Physiol. 1972 Mar;221(3):617–632. doi: 10.1113/jphysiol.1972.sp009771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradbury M. W., Stulcová B. Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J Physiol. 1970 Jun;208(2):415–430. doi: 10.1113/jphysiol.1970.sp009128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVSON H. A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J Physiol. 1955 Jul 28;129(1):111–133. doi: 10.1113/jphysiol.1955.sp005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DODGE P. R., CRAWFORD J. D., PROBST T. H. Studies in experimental water intoxication. Arch Neurol. 1960 Nov;3:513–529. doi: 10.1001/archneur.1960.00450050033005. [DOI] [PubMed] [Google Scholar]
- Dila C. J., Pappius H. M. Cerebral water and electrolytes. An experimental model of inappropriate secretion of antidiuretic hormone. Arch Neurol. 1972 Jan;26(1):85–90. doi: 10.1001/archneur.1972.00490070103013. [DOI] [PubMed] [Google Scholar]
- Ericsson B. F. Effect of vasopressin on the distribution of cardiac output and organ blood flow in the anesthetized dog. Acta Chir Scand. 1971;137(8):729–738. [PubMed] [Google Scholar]
- Fieschi C., Bozzao L., Agnoli A. Regional clearance of hydrogen as a measure of cerebral blood flow. Acta Neurol Scand Suppl. 1965;14:46–52. doi: 10.1111/j.1600-0404.1965.tb01952.x. [DOI] [PubMed] [Google Scholar]
- Firth J. A. Cytochemical localization of the K+ regulation interface between blood and brain. Experientia. 1977 Aug 15;33(8):1093–1094. doi: 10.1007/BF01945990. [DOI] [PubMed] [Google Scholar]
- Gardiner R. M. The effect of feeding on cerebral blood flow and oxygen consumption in the new-born calf. J Physiol. 1980 Apr;301:429–438. doi: 10.1113/jphysiol.1980.sp013215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazitùa S., Scott J. B., Swindall B., Haddy F. J. Resistance responses to local changes in plasma osmolality in three vascular beds. Am J Physiol. 1971 Feb;220(2):384–391. doi: 10.1152/ajplegacy.1971.220.2.384. [DOI] [PubMed] [Google Scholar]
- Goldstein G. W. Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J Physiol. 1979 Jan;286:185–195. doi: 10.1113/jphysiol.1979.sp012613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZMAN R., LEIDERMAN P. Brain potassium exchange in normal adult and immature rats. Am J Physiol. 1953 Nov;175(2):263–270. doi: 10.1152/ajplegacy.1953.175.2.263. [DOI] [PubMed] [Google Scholar]
- LINDEN R. J., LEDSOME J. R., NORMAN J. SIMPLE METHODS FOR THE DETERMINATION OF THE CONCENTRATIONS OF CARBON DIOXIDE AND OXYGEN IN BLOOD. Br J Anaesth. 1965 Feb;37:77–88. doi: 10.1093/bja/37.2.77. [DOI] [PubMed] [Google Scholar]
- Rosenberg H. M., Shank B. B., Gregg E. C. Volume changes of mammalian cells subjected to hypotonic solutions in vitro: evidence for the requirement of a sodium pump for the shrinking phase. J Cell Physiol. 1972 Aug;80(1):23–32. doi: 10.1002/jcp.1040800104. [DOI] [PubMed] [Google Scholar]
- Rymer M. M., Fishman R. A. Protective adaptation of brain to water intoxication. Arch Neurol. 1973 Jan;28(1):49–54. doi: 10.1001/archneur.1973.00490190067009. [DOI] [PubMed] [Google Scholar]
- Sjöquist P. O., Bjellin L., Carter A. M. Effect of 1-deamino-6-carba- (8-arginine)- vasopressin on organ blood flow in the female guinea pig. Eur J Pharmacol. 1977 Nov 1;46(1):25–30. doi: 10.1016/0014-2999(77)90140-6. [DOI] [PubMed] [Google Scholar]
- WOODBURY D. M. Effect of acute hyponatremia on distribution of water and electrolytes in various tissues of the rat. Am J Physiol. 1956 May;185(2):281–286. doi: 10.1152/ajplegacy.1956.185.2.281. [DOI] [PubMed] [Google Scholar]
- Wahl M., Kuschinsky W., Bosse O., Thurau K. Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. A microapplication study. Circ Res. 1973 Feb;32(2):162–169. doi: 10.1161/01.res.32.2.162. [DOI] [PubMed] [Google Scholar]
- Wasterlain C. G., Posner J. B. Cerebral edema in water intoxication. I. Clinical and chemical observations. Arch Neurol. 1968 Jul;19(1):71–78. doi: 10.1001/archneur.1968.00480010089007. [DOI] [PubMed] [Google Scholar]
