Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426

The variance of sodium current fluctuations at the node of Ranvier

F J Sigworth 1
PMCID: PMC1283036  PMID: 6259340

Abstract

1. Single myelinated nerve fibres 12-17 μm in diameter from Rana temporaria and Rana pipiens were voltage clamped at 2-5 °C. Potassium currents were blocked by internal Cs+ and external tetraethylammonium ion. Series resistance compensation was employed.

2. Sets of 80-512 identical, 20 ms depolarizations were applied, with the pulses repeated at intervals of 300-600 ms. The resulting membrane current records, filtered at 5 kHz, showed record-to-record variations of the current on the order of 1%. From each set of records the time course of the mean current and the time course of the variance were calculated.

3. The variance was assumed to arise primarily from two independent sources of current fluctuations: the stochastic gating of sodium channels and the thermal noise background in the voltage clamp. Measurement of the passive properties of the nerve preparation allowed the thermal noise variance to be estimated, and these estimates accounted for the variance observed in the presence of tetrodotoxin and at the reversal potential.

4. After the variance σ2 was corrected for the contribution from the background, its relationship to the mean current I could be fitted by the function σ2 = iI—I2/N expected for N independent channels having one non-zero conductance level. The single channel currents i corresponded to a single-channel chord conductance γ = 6·4 ± 0·9 pS (S.D.; n = 14). No significant difference in γ was observed between the two species of frogs. The size of the total population of channels ranged from 20,000 to 46,000.

5. The voltage dependence of i corresponded closely to the form of the instantaneous current—voltage relationship of the sodium conductance, except at the smallest depolarizations. The small values of i at small depolarizations may have resulted from the filtering of high-frequency components of the fluctuations.

6. It is concluded that sodium channels have only two primary levels of conductance, corresponding to `open' and `closed' states of the channel.

7. The fraction pmax of channels open at the time of the peak conductance was found to be 0·59 ± 0·08 (S.D.; n = 5) and 0·9 ± 0·1 (S.D.; n = 3) for depolarizations to -5 and +125 mV, respectively. (50 ms hyperpolarizations to -105 mV preceded the depolarizations in each case.) These values are similar to those predicted by Hodgkin-Huxley kinetics.

8. Fluctuations in the firing threshold of neurones are expected from the stochastic gating of sodium channels. A prediction of the size of these fluctuations based on the measured properties of the channels gives a value of about 1% for the relative spread, which agrees with experimental values in the literature.

Full text

PDF
97

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begenisich T., Stevens C. F. How many conductance states do potassium channels have? Biophys J. 1975 Aug;15(8):843–846. doi: 10.1016/S0006-3495(75)85858-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiu S. Y. Inactivation of sodium channels: second order kinetics in myelinated nerve. J Physiol. 1977 Dec;273(3):573–596. doi: 10.1113/jphysiol.1977.sp012111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiu S. Y., Ritchie J. M., Rogart R. B., Stagg D. A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol. 1979 Jul;292:149–166. doi: 10.1113/jphysiol.1979.sp012843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conti F., De Felice L. J., Wanke E. Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol. 1975 Jun;248(1):45–82. doi: 10.1113/jphysiol.1975.sp010962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conti F., Hille B., Neumcke B., Nonner W., Stämpfli R. Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J Physiol. 1976 Nov;262(3):729–742. doi: 10.1113/jphysiol.1976.sp011617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conti F., Hille B., Neumcke B., Nonner W., Stämpfli R. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J Physiol. 1976 Nov;262(3):699–727. doi: 10.1113/jphysiol.1976.sp011616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Conti F., Wanke E. Channel noise in nerve membranes and lipid bilayers. Q Rev Biophys. 1975 Nov;8(4):451–506. doi: 10.1017/s0033583500001967. [DOI] [PubMed] [Google Scholar]
  10. DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DODGE F. A., FRANKENHAEUSER B. Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J Physiol. 1959 Oct;148:188–200. doi: 10.1113/jphysiol.1959.sp006281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeFelice L. J. Fluctuation analysis in neurobiology. Int Rev Neurobiol. 1977;20:169–208. doi: 10.1016/s0074-7742(08)60653-4. [DOI] [PubMed] [Google Scholar]
  13. Derksen H. E. Axon membrane voltage fluctuations. Acta Physiol Pharmacol Neerl. 1965;13(4):373–466. [PubMed] [Google Scholar]
  14. Drouin H., Neumcke B. Specific and unspecific charges at the sodium channels of the nerve membrane. Pflugers Arch. 1974;351(3):207–229. doi: 10.1007/BF00586919. [DOI] [PubMed] [Google Scholar]
  15. Ehrenstein G., Lecar H., Nossal R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol. 1970 Jan;55(1):119–133. doi: 10.1085/jgp.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FRANKENHAEUSER B., MOORE L. E. THE EFFECT OF TEMPERATURE ON THE SODIUM AND POTASSIUM PERMEABILITY CHANGES IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. J Physiol. 1963 Nov;169:431–437. doi: 10.1113/jphysiol.1963.sp007269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K + channels. Biophys J. 1972 Aug;12(8):948–959. doi: 10.1016/S0006-3495(72)86136-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hille B. The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol. 1971 Dec;58(6):599–619. doi: 10.1085/jgp.58.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hille B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J Gen Physiol. 1967 May;50(5):1287–1302. doi: 10.1085/jgp.50.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lamb T. D., Simon E. J. Analysis of electrical noise in turtle cones. J Physiol. 1977 Nov;272(2):435–468. doi: 10.1113/jphysiol.1977.sp012053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lecar H., Nossal R. Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing. Biophys J. 1971 Dec;11(12):1048–1067. doi: 10.1016/S0006-3495(71)86277-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lecar H., Nossal R. Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophys J. 1971 Dec;11(12):1068–1084. doi: 10.1016/S0006-3495(71)86278-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mauro A., Conti F., Dodge F., Schor R. Subthreshold behavior and phenomenological impedance of the squid giant axon. J Gen Physiol. 1970 Apr;55(4):497–523. doi: 10.1085/jgp.55.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
  27. Neher E., Sakmann B., Steinbach J. H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 1978 Jul 18;375(2):219–228. doi: 10.1007/BF00584247. [DOI] [PubMed] [Google Scholar]
  28. Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
  29. Neumcke B., Fox J. M., Drouin H., Schwarz W. Kinetics of the slow variation of peak sodium current in the membrane of myelinated nerve following changes of holding potential or extracellular pH. Biochim Biophys Acta. 1976 Mar 5;426(2):245–257. doi: 10.1016/0005-2736(76)90335-7. [DOI] [PubMed] [Google Scholar]
  30. Neumcke B., Schwarz W., Stämpfli R. Slow actions of hyperpolarization on sodium channels in the membrane of myelinated nerve. Biochim Biophys Acta. 1979 Nov 16;558(1):113–118. doi: 10.1016/0005-2736(79)90320-1. [DOI] [PubMed] [Google Scholar]
  31. Nonner W. A new voltage clamp method for Ranvier nodes. Pflugers Arch. 1969;309(2):176–192. doi: 10.1007/BF00586967. [DOI] [PubMed] [Google Scholar]
  32. Sigworth F. J. Sodium channels in nerve apparently have two conductance states. Nature. 1977 Nov 17;270(5634):265–267. doi: 10.1038/270265a0. [DOI] [PubMed] [Google Scholar]
  33. Sigworth F. J. The conductance of sodium channels under conditions of reduced current at the node of Ranvier. J Physiol. 1980 Oct;307:131–142. doi: 10.1113/jphysiol.1980.sp013427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES