Abstract
1. Radioactively labelled compounds, several of which are neurotransmitters, were injected with pressure into the soma of the serotonergic giant cerebral neurone (g.c.n.) of Aplysia californica. The compounds injected were [3H]dopamine, [3H]DL-octopamine, [3H]histamine, [3H]gamma-aminobutyric acid and [3H]choline. 2. Substantial amounts of radioactivity appeared in the axons of the g.c.n. with all of the injected compounds. Except for [3H]choline, the amounts were similar to the amount appearing when [3H]serotonin is injected. 3. The biogenic amines, [3H]dopamine, DL-[3H]octopamine and [3H]histamine, all moved in the axon at velocities similar to that of [3H]serotonin. In contrast, the radioactivity in axons of cells injected with [3H]gamma-aminobutyric acid and [3H]choline moved much more slowly. In addition, the shapes of the spatial distributions of radioactivity in the axons of cells injected with the biogenic amines resembled that obtained when [3H]serotonin is injected. This distribution is characteristic of fast axonal transport. The spatial distributions of radioactivity in the axons of cells injected with [3H]gamma-aminobutyric acid and [3H]choline were markedly different. We thus conclude that [3H]dopamine, DL-[3H]octopamine and [3H]histamine move by fast axonal transport, whereas the radioactivity in the axons of cells injected with [3H]gamma-aminobutyric acid and [3H]choline does not. 4. Injection of large amounts of dopamine and octopamine reduced the export into the axon of [3H]serotonin injected into the same cell. Large amounts of choline did not reduce export of [3H]serotonin. We conclude that the biogenic amines compete with serotonin for the vesicular storage site and that they move by fast transport because they are sequestered by the serotonergic storage vesicle. 5. The specificity of uptake into the storage vesicle as assayed with this in vivo system is similar to the specificity of uptake into aminergic vesicles as previously studied in vitro.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976 Aug;1(4):239–248. doi: 10.1016/0306-4522(76)90054-3. [DOI] [PubMed] [Google Scholar]
- Chan-Palay V., Jonsson G., Palay S. L. Serotonin and substance P coexist i, neurons of the rat's central nervous system. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1582–1586. doi: 10.1073/pnas.75.3.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. L., Weiss K. R., Kupfermann I. Motor control of buccal muscles in Aplysia. J Neurophysiol. 1978 Jan;41(1):157–180. doi: 10.1152/jn.1978.41.1.157. [DOI] [PubMed] [Google Scholar]
- Da Prada M., Obrist R., Pletscher A. Discrimination of monoamine uptake by membranes of adrenal chromaffin granules. Br J Pharmacol. 1975 Feb;53(2):257–265. doi: 10.1111/j.1476-5381.1975.tb07357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Da Prada M., Pletscher A. Differential uptake of biogenic amines by isolated 5-hydroxytryptamine organelles of blood platelets. Life Sci. 1969 Jan 1;8(1):65–72. doi: 10.1016/0024-3205(69)90294-x. [DOI] [PubMed] [Google Scholar]
- Eisenstadt M. L., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. III. Studies of an indentified cholinergic neuron. J Gen Physiol. 1975 Mar;65(3):293–213. doi: 10.1085/jgp.65.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giller E., Jr, Schwartz J. H. Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J Neurophysiol. 1971 Jan;34(1):93–107. doi: 10.1152/jn.1971.34.1.93. [DOI] [PubMed] [Google Scholar]
- Goldberg D. J., Schwartz J. H., Sherbany A. A. Kinetic properties of normal and perturbed axonal transport of serotonin in a single identified axon. J Physiol. 1978 Aug;281:559–579. doi: 10.1113/jphysiol.1978.sp012439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman J. E., Kim K. S., Schwartz J. H. Axonal transport of [3H]serotonin in an identified neuron of Aplysia californica. J Cell Biol. 1976 Aug;70(2 Pt 1):304–318. doi: 10.1083/jcb.70.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman J. E., Schwartz J. H. Cellular specificity of serotonin storage and axonal transport in identified neurones of Aplysia californica. J Physiol. 1974 Oct;242(1):61–76. doi: 10.1113/jphysiol.1974.sp010694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman J. E., Schwartz J. H. Metabolism of [3H]serotonin in the marine mollusc, Aplysia californica. Brain Res. 1977 Nov 4;136(1):77–88. doi: 10.1016/0006-8993(77)90133-0. [DOI] [PubMed] [Google Scholar]
- Haley J. E., Wisniewski H. M., Ledeen R. W. Extra-axonal diffusion in the rabbit optic system: a caution in axonal transport studies. Brain Res. 1979 Dec 21;179(1):69–76. doi: 10.1016/0006-8993(79)90490-6. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Elfvin L. G., Elde R., Schultzberg M., Goldstein M., Luft R. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3587–3591. doi: 10.1073/pnas.74.8.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hökfelt T., Ljungdahl A., Steinbusch H., Verhofstad A., Nilsson G., Brodin E., Pernow B., Goldstein M. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience. 1978;3(6):517–538. doi: 10.1016/0306-4522(78)90017-9. [DOI] [PubMed] [Google Scholar]
- Ingoglia N. A., Sturman J. A., Eisner R. A. Axonal transport of putrescine, spermidine and spermine in normal and regenerating goldfish optic nerves. Brain Res. 1977 Jul 22;130(3):433–445. doi: 10.1016/0006-8993(77)90107-x. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
- Johnston G. A., Iversen L. L. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J Neurochem. 1971 Oct;18(10):1951–1961. doi: 10.1111/j.1471-4159.1971.tb09601.x. [DOI] [PubMed] [Google Scholar]
- Kopin I. J. False adrenergic transmitters. Annu Rev Pharmacol. 1968;8:377–394. doi: 10.1146/annurev.pa.08.040168.002113. [DOI] [PubMed] [Google Scholar]
- Léger L., Pujol J. F., Bobillier P., Jouvet M. Transport axoplasmique de la sérotonine par voie rétrograde dans les neurones mono-aminergiques centraux. C R Acad Sci Hebd Seances Acad Sci D. 1977 Nov 7;285(12):1179–1182. [PubMed] [Google Scholar]
- McGeer E. G., Searl K., Fibiger H. C. Chemical specificity of dopamine transport in the nigro--neostriatal projection. J Neurochem. 1975 Feb;24(2):283–288. doi: 10.1111/j.1471-4159.1975.tb11877.x. [DOI] [PubMed] [Google Scholar]
- NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne N. N. Do snail neurones contain more than one neurotransmitter? Nature. 1977 Dec 15;270(5638):622–623. doi: 10.1038/270622a0. [DOI] [PubMed] [Google Scholar]
- Phillips J. H. Steady-state kinetics of catecholamine transport by chromaffin-granule "ghosts". Biochem J. 1974 Nov;144(2):319–325. doi: 10.1042/bj1440319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Politis M. J., Ingoglia N. A. Axonal transport of nucleosides, nucleotides and 4S RNA in the neonatal rat visual system. Brain Res. 1979 Jun 22;169(2):343–356. doi: 10.1016/0006-8993(79)91035-7. [DOI] [PubMed] [Google Scholar]
- Rösner J., Wiegandt H., Rahmann H. Sialic acid incorporation into gangliosides and glycoproteins of the fish brain. J Neurochem. 1973 Sep;21(3):655–665. doi: 10.1111/j.1471-4159.1973.tb06010.x. [DOI] [PubMed] [Google Scholar]
- Schwartz J. H. Axonal transport: components, mechanisms, and specificity. Annu Rev Neurosci. 1979;2:467–504. doi: 10.1146/annurev.ne.02.030179.002343. [DOI] [PubMed] [Google Scholar]
- Schwartz J. H., Shkolnik L. J., Goldberg D. J. Specific association of neurotransmitter with somatic lysosomes in an identified serotonergic neuron of Aplysia californica. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5967–5971. doi: 10.1073/pnas.76.11.5967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shkolnik L. J., Schwartz J. H. Genesis and maturation of serotonergic vesicles in identified giant cerebral neuron of Aplysia. J Neurophysiol. 1980 Apr;43(4):945–967. doi: 10.1152/jn.1980.43.4.945. [DOI] [PubMed] [Google Scholar]
- Treistman S. N., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. IV. Studies of an identified cholinergic axon. J Gen Physiol. 1977 Jun;69(6):725–741. doi: 10.1085/jgp.69.6.725. [DOI] [PMC free article] [PubMed] [Google Scholar]