Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Oct;307:273–299. doi: 10.1113/jphysiol.1980.sp013435

A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro

P Andersen 1, H Silfvenius 1,*, S H Sundberg 1,, O Sveen 1
PMCID: PMC1283045  PMID: 7205666

Abstract

1. In vitro slices of guinea-pig hippocampus have been employed to compare excitatory synapses located distally and proximally on the dendritic tree of CA1 pyramidal cells.

2. The main orientation of unmyelinated afferent fibres was found to be parallel to each other and perpendicular to the dendritic axis.

3. The density of boutons ending on dendritic spines was roughly similar throughout the greater part of the dendritic tree with an average of 42 ± 7·2 synapses per 100 μm2. Their number did, however, decrease in the distal fifth of the apical and in the distal third of the basal dendritic region in parallel with an increase of boutons on the dendritic shafts.

4. Negative synaptic field potentials (extracellular field e.p.s.p.s) had their maximum in the region where activated afferent fibres terminated and showed reversal when recorded from sufficiently displaced positions along the dendritic axis. The field e.p.s.p. was preceded by a diphasic presynaptic fibre volley. By cutting all but a narrow bundle of afferent fibres selective activation of a small group of dendritic synapses was possible. Stimulation of fibres crossing tissue bridges (35-100 μm wide) evoked field e.p.s.p.s comparable in amplitude to those seen in slices without lesions. The size of the field e.p.s.p.s evoked via distal and proximal bridges was remarkably similar and linearly related to the size of the appropriate stimulus current and presynaptic volley.

5. Selective activation of a small group of afferent fibres gave rise to large amplitude population spikes. Proximal and distal bridges were largely equipotent when they were equally wide. Above the threshold amplitude, the evoked population spikes were linearly related to both the presynaptic volley and the stimulus current. Constant current stimulation of fibres at all apical dendritic levels was equally effective in evoking population spikes, with the exception of the outer fifth of the tree where stimulation was unsuccessful. Input across distal or proximal bridges (400 or 50 μm from the soma) also gave the same high probability of discharge of single units (1·0 for thirty-five of thirty-six cells).

6. An input across a narrow and distal bridge (35 μm), representing less than 5% of the fibres synapsing on the apical dendrite, was sufficient to give a firing probability of 1·0 for all cells tested (fifteen).

7. For seventeen cells pairs of equally wide distal and proximal apical dendritic bridges were compared. Both inputs gave a mean probability of firing above 0·95 with stimulation strengths less than 2·5 times the spike threshold.

8. Intracellular e.p.s.p.s had similar shapes following activation across distal and proximal dendritic bridges. The amplitude of neither type was significantly affected by hyperpolarization of the soma up to 25 mV. The half-width was prolonged to the same moderate degree for both inputs.

9. The firing level for the action potential was similar for proximal and distal dendritic inputs and for spikes excited by depolarizing current pulses across the soma membrane.

10. The apparent equipotentiality of synchronously activated distal and proximal dendritic synapses is discussed in the light of the known histology of the CA1 pyramidal cells.

Full text

PDF
273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. PATHWAY OF POSTSYNAPTIC INHIBITION IN THE HIPPOCAMPUS. J Neurophysiol. 1964 Jul;27:608–619. doi: 10.1152/jn.1964.27.4.608. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P. Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand. 1960 Mar 18;48:178–208. doi: 10.1111/j.1748-1716.1960.tb01858.x. [DOI] [PubMed] [Google Scholar]
  3. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  4. Andersen P., Silfvenius H., Sundberg S. H., Sveen O. Effects of remote dendritic synapses on hippocampal pyramids [proceedings]. J Physiol. 1977 Mar;266(1):100P–100P. [PubMed] [Google Scholar]
  5. Andersen P., Silfvenius H., Sundberg S. H., Sveen O., Wigström H. Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Res. 1978 Apr 7;144(1):11–18. doi: 10.1016/0006-8993(78)90431-6. [DOI] [PubMed] [Google Scholar]
  6. Anderson P., Lomo T. Mode of activation of hippocampal pyramidal cells by excitatory synapses on dendrites. Exp Brain Res. 1966;2(3):247–260. [PubMed] [Google Scholar]
  7. BROCK L. G., COOMBS J. S., ECCLES J. C. The nature of the monosynaptic excitatory and inhibitory processes in the spinal cord. Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):170–176. [PubMed] [Google Scholar]
  8. FRANK K., FUORTES M. G. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955 Dec 29;130(3):625–654. doi: 10.1113/jphysiol.1955.sp005432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  10. Gray E. G., Hamlyn L. H. Electron microscopy of experimental degeneration in the avian optic tectum. J Anat. 1962 Jul;96(Pt 3):309–316.5. [PMC free article] [PubMed] [Google Scholar]
  11. Humphrey D. R. Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr Clin Neurophysiol. 1968 Nov;25(5):421–442. doi: 10.1016/0013-4694(68)90152-1. [DOI] [PubMed] [Google Scholar]
  12. Iansek R., Redman S. J. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J Physiol. 1973 Nov;234(3):665–688. doi: 10.1113/jphysiol.1973.sp010366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jack J. J., Miller S., Porter R., Redman S. J. The time course of minimal excitory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. J Physiol. 1971 Jun;215(2):353–380. doi: 10.1113/jphysiol.1971.sp009474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jack J. J., Redman S. J. An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J Physiol. 1971 Jun;215(2):321–352. doi: 10.1113/jphysiol.1971.sp009473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jack J. J., Redman S. J. The propagation of transient potentials in some linear cable structures. J Physiol. 1971 Jun;215(2):283–320. doi: 10.1113/jphysiol.1971.sp009472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jankowska E., Roberts W. J. An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J Physiol. 1972 May;222(3):597–622. doi: 10.1113/jphysiol.1972.sp009817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones E. G., Powell T. P. Electron microscopy of the somatic sensory cortex of the cat. I. Cell types and synaptic organization. Philos Trans R Soc Lond B Biol Sci. 1970 Jan 29;257(812):1–11. doi: 10.1098/rstb.1970.0003. [DOI] [PubMed] [Google Scholar]
  18. KANDEL E. R., SPENCER W. A., BRINLEY F. J., Jr Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol. 1961 May;24:225–242. doi: 10.1152/jn.1961.24.3.225. [DOI] [PubMed] [Google Scholar]
  19. Llinas R., Nicholson C. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J Neurophysiol. 1971 Jul;34(4):532–551. doi: 10.1152/jn.1971.34.4.532. [DOI] [PubMed] [Google Scholar]
  20. Matthews D. A., Cotman C., Lynch G. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res. 1976 Oct 8;115(1):1–21. doi: 10.1016/0006-8993(76)90819-2. [DOI] [PubMed] [Google Scholar]
  21. Nafstad P. H. An electron microscope study on the termination of the perforant path fibres in the hippocampus and the fascia dentata. Z Zellforsch Mikrosk Anat. 1967;76(4):532–542. doi: 10.1007/BF00339754. [DOI] [PubMed] [Google Scholar]
  22. Nelson P. G., Frank K. Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J Neurophysiol. 1967 Sep;30(5):1097–1113. doi: 10.1152/jn.1967.30.5.1097. [DOI] [PubMed] [Google Scholar]
  23. RALL W. Electrophysiology of a dendritic neuron model. Biophys J. 1962 Mar;2(2 Pt 2):145–167. doi: 10.1016/s0006-3495(62)86953-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rall W., Burke R. E., Smith T. G., Nelson P. G., Frank K. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol. 1967 Sep;30(5):1169–1193. doi: 10.1152/jn.1967.30.5.1169. [DOI] [PubMed] [Google Scholar]
  25. Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
  26. Schwartzkroin P. A. Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 1975 Mar 7;85(3):423–436. doi: 10.1016/0006-8993(75)90817-3. [DOI] [PubMed] [Google Scholar]
  27. Skrede K. K., Westgaard R. H. The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 1971 Dec 24;35(2):589–593. doi: 10.1016/0006-8993(71)90508-7. [DOI] [PubMed] [Google Scholar]
  28. Sloper J. J., Powell T. P. Ultrastructural features of the sensori-motor cortex of the primate. Philos Trans R Soc Lond B Biol Sci. 1979 Mar 23;285(1006):124–139. [PubMed] [Google Scholar]
  29. Stoney S. D., Jr, Thompson W. D., Asanuma H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol. 1968 Sep;31(5):659–669. doi: 10.1152/jn.1968.31.5.659. [DOI] [PubMed] [Google Scholar]
  30. WESTRUM L. E., BLACKSTAD T. W. An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. J Comp Neurol. 1962 Dec;119:281–309. doi: 10.1002/cne.901190303. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES