Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1980 Oct;307:319–333. doi: 10.1113/jphysiol.1980.sp013437

Porcine muscle responses to carbachol, alpha- and beta-adrenoceptor agonists, halothane or hyperthermia.

G A Gronert, J H Milde, S R Taylor
PMCID: PMC1283047  PMID: 7205667

Abstract

1. Whole body trans-section at the level of the first or second lumbar vertebra of stress-susceptible or normal Poland China swine provided a preparation of isolated perfused caudal muscle that was without nervous or hormonal influences. Metabolic responses to halothane anaesthesia were exaggerated in the susceptible preparation. 2. Carbachol (10(-4) M) increased O2 consumption threefold and elevated blood lactate levels from 3 to 8 mumole/ml. in susceptible but not in normal muscle preparations. 3. Isoprenaline in a continuous infusion (2.5 micrograms/kg caudal wt. per min for 12 min, subsequently diminished to 1.2 microgram/kg per min) did not increase O2 consumption of susceptible or normal muscle but did increase blood lactate by 2 mumole/ml. in both. 4. Simultaneous administration of carbachol and isoprenaline resulted in additive increases in blood lactate. 5. Incremental increases in temperature above 41 degrees C initiated exaggerated increases in O2 consumption and blood lactate in susceptible but not normal muscle; these were similar to whole body responses. 6. Phenylephrine (0.2-25 micrograms/kg per min continuous) produced (i) hypertension, (ii) no observed effects upon aerobic or anaerobic metabolism and (iii) progressive tissue oedema; these effects were similar in susceptible and normal muscle. 7. Skeletal muscle from stress-susceptible swine is evidently inherently capable of metabolic responses to cholinergic agonists and increased temperature; these responses are greater than those in normal muscle. This suggests that initiation of stress responses in intact swine is related to somatic motor and sympathetic stimulation of abnormal skeletal muscle, and not to a disorder of the somatic or sympathetic nervous system.

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman W. C., Nott M. W. Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol Rev. 1969 Mar;21(1):27–72. [PubMed] [Google Scholar]
  2. Britt B. A. Etiology and pathophysiology of malignant hyperthermia. Fed Proc. 1979 Jan;38(1):44–48. [PubMed] [Google Scholar]
  3. Carlisle H. J., Ingram D. L. The influence of body core temperature and peripheral temperatures on oxygen consumption in the pig. J Physiol. 1973 Jun;231(2):341–352. doi: 10.1113/jphysiol.1973.sp010236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark M. G., Williams C. H., Pfeifer W. F., Bloxham D. P., Holland P. C., Taylor C. A., Lardy H. A. Letter: Accelerated substrate cycling of fructose-6-phosphate in the muscle of malignant hyperthermic pigs. Nature. 1973 Sep 14;245(5420):99–101. doi: 10.1038/245099a0. [DOI] [PubMed] [Google Scholar]
  5. Forrest J. C., Will J. A., Schmidt G. R., Judge M. D., Briskey E. J. Homeostasisin animals (Sus domesticus) during exposure to a warm environment. J Appl Physiol. 1968 Jan;24(1):33–39. doi: 10.1152/jappl.1968.24.1.33. [DOI] [PubMed] [Google Scholar]
  6. Fuchs F. Thermal inactivation of the calcium regulatory mechanism of human skeletal muscle actomyosin: a possible contributing factor in the rigidity of malignant hyperthermia. Anesthesiology. 1975 May;42(5):584–589. doi: 10.1097/00000542-197505000-00014. [DOI] [PubMed] [Google Scholar]
  7. Gallant E. M., Godt R. E., Gronert G. A. Role of plasma membrane defect of skeletal muscle in malignant hyperthermia. Muscle Nerve. 1979 Nov-Dec;2(6):491–494. doi: 10.1002/mus.880020610. [DOI] [PubMed] [Google Scholar]
  8. Gronert G. A., Heffron J. J., Milde J. H., Theye R. A. Porcine malignant hyperthermia: role of skeletal muscle in increased oxygen consumption. Can Anaesth Soc J. 1977 Jan;24(1):103–109. doi: 10.1007/BF03006817. [DOI] [PubMed] [Google Scholar]
  9. Gronert G. A., Heffron J. J. Skeletal muscle mitochondria in porcine malignant hyperthermia: respiratory activity, calcium functions, and depression by halothane. Anesth Analg. 1979 Mar-Apr;58(2):76–81. [PubMed] [Google Scholar]
  10. Gronert G. A., Heffron J. J., Taylor S. R. Skeletal muscle sarcoplasmic reticulum in porcine malignant hyperthermia. Eur J Pharmacol. 1979 Sep 15;58(2):179–187. doi: 10.1016/0014-2999(79)90010-4. [DOI] [PubMed] [Google Scholar]
  11. Gronert G. A., Milde J. H., Theye R. A. Porcine malignant hyperthermia induced by halothane and succinylcholine: failure of treatment with procaine or procainamide. Anesthesiology. 1976 Feb;44(2):124–132. doi: 10.1097/00000542-197602000-00004. [DOI] [PubMed] [Google Scholar]
  12. Gronert G. A., Milde J. H., Theye R. A. Role of sympathetic activity in porcine malignant hyperthermia. Anesthesiology. 1977 Nov;47(5):411–415. doi: 10.1097/00000542-197711000-00004. [DOI] [PubMed] [Google Scholar]
  13. Gronert G. A. Muscle contractures and adenosine triphosphate depletion in porcine malignant hyperthermia. Anesth Analg. 1979 Sep-Oct;58(5):367–371. doi: 10.1213/00000539-197909000-00004. [DOI] [PubMed] [Google Scholar]
  14. Gronert G. A., Theye R. A. Halothane-induced porcine malignant hyperthermia: metabolic and hemodynamic changes. Anesthesiology. 1976 Jan;44(1):36–43. doi: 10.1097/00000542-197601000-00008. [DOI] [PubMed] [Google Scholar]
  15. Gronert G. A., Theye R. A. Suxamethonium-induced porcine malignant hyperthermia. Br J Anaesth. 1976 Jun;48(6):513–517. doi: 10.1093/bja/48.6.513. [DOI] [PubMed] [Google Scholar]
  16. Hall G. M., Lucke J. N., Lister D. Porcine malignant hyperthermia. V: Fatal hyperthermia in the Pietrain pig, associated with the infusion of alpha-adrenergic agonists. Br J Anaesth. 1977 Sep;49(9):855–863. doi: 10.1093/bja/49.9.855. [DOI] [PubMed] [Google Scholar]
  17. Judge M. D., Eikelenboom G., Zuidam L., Sybesma W. Blood acid-base status and oxygen binding during stress-induced hyperthermia in pigs. J Anim Sci. 1973 Sep;37(3):776–784. doi: 10.2527/jas1973.373776x. [DOI] [PubMed] [Google Scholar]
  18. Kendig J. J., Bunker J. P. Alterations in muscle resting potentials and electrolytes during halothane and cyclopropane anesthesia. Anesthesiology. 1972 Feb;36(2):128–131. doi: 10.1097/00000542-197202000-00008. [DOI] [PubMed] [Google Scholar]
  19. Kerr D. D., Wingard D. W., Gatz E. E. Prevention of porcine malignant hyperthermia by epidural block. Anesthesiology. 1975 Mar;42(3):307–311. doi: 10.1097/00000542-197503000-00013. [DOI] [PubMed] [Google Scholar]
  20. Koketsu K., Ohta Y. Acceleration of the electrogenic Na+ pump by adrenaline in frog skeletal muscle fibres. Life Sci. 1976 Oct 1;19(7):1009–1013. doi: 10.1016/0024-3205(76)90292-7. [DOI] [PubMed] [Google Scholar]
  21. Lister D., Hall G. M., Lucke J. N. Porcine malignant hyperthermia. III: Adrenergic blockade. Br J Anaesth. 1976 Sep;48(9):831–838. doi: 10.1093/bja/48.9.831. [DOI] [PubMed] [Google Scholar]
  22. Lister D., Sair R. A., Will J. A., Schmidt G. R., Cassens R. G., Hoekstra W. G., Briskey E. J. Metabolism of striated muscle of stress-susceptible pigs breathing oxygen or nitrogen. Am J Physiol. 1970 Jan;218(1):102–107. doi: 10.1152/ajplegacy.1970.218.1.102. [DOI] [PubMed] [Google Scholar]
  23. Lucke J. N., Denny H., Hall G. M., Lovell R., Lister D. Porcine malignant hyperthermia. VI: the effects of bilateral adrenalectomy and pretreatment with bretylium on the halothane-induced response. Br J Anaesth. 1978 Mar;50(3):241–246. doi: 10.1093/bja/50.3.241. [DOI] [PubMed] [Google Scholar]
  24. Lucke J. N., Hall G. M., Lister D. Porcine malignant hyperthermia. I: Metabolic and physiological changes. Br J Anaesth. 1976 Apr;48(4):297–304. doi: 10.1093/bja/48.4.297. [DOI] [PubMed] [Google Scholar]
  25. Moulds R. F., Denborough M. A. Biochemical basis of malignant hyperpyrexia. Br Med J. 1974 May 4;2(5913):241–244. doi: 10.1136/bmj.2.5913.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nelson T. E., Bedell D. M., Jones E. W. Porcine malignant hyperthermia: effects of temperature and extracellular calcium concentration on halothane-induced contracture of susceptible skeletal muscle. Anesthesiology. 1975 Mar;42(3):301–306. [PubMed] [Google Scholar]
  27. Perry L. B., Van Dyke R. A., Theye R. A. Sympathoadrenal and hemodynamic effects of isoflurane, halothane, and cyclopropane in dogs. Anesthesiology. 1974 May;40(5):465–470. doi: 10.1097/00000542-197405000-00014. [DOI] [PubMed] [Google Scholar]
  28. Rahn H. Body temperature and acid-base regulation. (Review article). Pneumonologie. 1974;151(2):87–94. doi: 10.1007/BF02097155. [DOI] [PubMed] [Google Scholar]
  29. Theye R. A. The determination of O2 and CO2 content in blood containing halothane. Anesthesiology. 1969 Mar;30(3):325–327. doi: 10.1097/00000542-196903000-00016. [DOI] [PubMed] [Google Scholar]
  30. Veech R. L., Raijman L., Krebs H. A. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J. 1970 Apr;117(3):499–503. doi: 10.1042/bj1170499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams C. H. Some observations on the etiology of the fulminant hyperthermia-stress syndrome. Perspect Biol Med. 1976 Autumn;20(1):120–130. doi: 10.1353/pbm.1976.0061. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES