Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Apr;266(2):209–218. doi: 10.1113/jphysiol.1977.sp011764

Extracellular potassium and trasmitter release at the giant synapse of squid.

S D Erulkar, F F Weight
PMCID: PMC1283562  PMID: 16128

Abstract

1. The effects of changes in extracellular K concentration, [K]0, on synaptic transmission were studied at the squid giant synapse with intracellular recording from the presynaptic terminal and post-synaptic axon. 2. The amplitudes of both the presynaptic spike and the e.p.s.p. varied inversely with [K]0. On the average, a 10 mV change in spike height was accompanied by a 3-1 mV change in e.p.s.p. amplitude. 3. The amplitude of the presynaptic spike after-hyperpolarization (AH) varied inversely with [K]0. On the average, increasing [K]0 resulted in a 20% change in e.p.s.p. amplitude per mV change in presynaptic spike AH. 4. Repetitive antidromic stimulation of the post-synaptic giant axon resulted in an exponential decline in the post-synaptic spike AH, a depolarization of the presynaptic membrane potential and a reduction in the AHs of presynaptic spikes. This suggests that the K which accumulates in the extracellular spaces around the post-synaptic axon also affects the presynaptic terminal. 5. Repetitive antidromic stimulation of the post-synaptic axon resulted in a reduction in the amplitude of e.p.s.p.s. elicted by stimulation of the presynaptic axon. The reduction in e.p.s.p. amplitude relative to the change in presynaptic spike AH was quantitatively close to the change produced by increasing [K]0, suggesting that the reduction in e.p.s.p. amplitude is due to the accumulation of extracellular K at the presynaptic terminal. 6. Repetitive stimulation of the presynaptic axon reduced the amplitudes of the e.p.s.p. and the presynaptic spike AH. On the average, a 1 mV change in presynaptic spike AH was accompanied by a 204% change in e.p.s.p. amplitude, suggesting that K accumulation may only contribute to a small extent, under these conditions, to the depression of transmitter release.

Full text

PDF
209

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULLOCK T. H. Properties of a single synapse in the stellate ganglion of squid. J Neurophysiol. 1948 Jul;11(4):343–364. doi: 10.1152/jn.1948.11.4.343. [DOI] [PubMed] [Google Scholar]
  2. Baylor D. A., Nicholls J. G. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):555–569. doi: 10.1113/jphysiol.1969.sp008879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CASTEJON O. J., VILLEGAS G. M. FINE STRUCTURE OF THE SYNAPTIC CONTACTS IN THE STELLATE GANGLION OF THE SQUID. J Ultrastruct Res. 1964 Jun;10:585–598. doi: 10.1016/s0022-5320(64)80032-0. [DOI] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HAMA K. Some observations on the fine structure of the giant synapse in the stellate ganglion of the squid, Doryteuphis bleekeri. Z Zellforsch Mikrosk Anat. 1962;56:437–444. doi: 10.1007/BF00335624. [DOI] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krnjević K., Morris M. E. Extracellular K + activity and slow potential changes in spinal cord and medulla. Can J Physiol Pharmacol. 1972 Dec;50(12):1214–1217. doi: 10.1139/y72-177. [DOI] [PubMed] [Google Scholar]
  12. Kríz N., Syková E., Ujec E., Vyklický L. Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat. J Physiol. 1974 Apr;238(1):1–15. doi: 10.1113/jphysiol.1974.sp010507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kusano K., Landau E. M. Depression and recovery of transmission at the squid giant synapse. J Physiol. 1975 Feb;245(1):13–32. doi: 10.1113/jphysiol.1975.sp010832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewis D. V., Schuette W. H. NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. J Neurophysiol. 1975 Mar;38(2):405–417. doi: 10.1152/jn.1975.38.2.405. [DOI] [PubMed] [Google Scholar]
  15. Llinás R., Joyner R. W., Nicholson C. Equilibrium potential for the postsynaptic response in the squid giant synapse. J Gen Physiol. 1974 Nov;64(5):519–535. doi: 10.1085/jgp.64.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miledi R., Slater C. R. The action of calcium on neuronal synapses in the squid. J Physiol. 1966 May;184(2):473–498. doi: 10.1113/jphysiol.1966.sp007927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miledi R. Transmitter action in the giant synapse of the squid. Nature. 1969 Sep 20;223(5212):1284–1286. doi: 10.1038/2231284a0. [DOI] [PubMed] [Google Scholar]
  18. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  19. Singer W., Lux H. D. Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus. Brain Res. 1973 Dec 21;64:17–33. doi: 10.1016/0006-8993(73)90168-6. [DOI] [PubMed] [Google Scholar]
  20. Somjen G. G., Lothman E. W. Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord. Brain Res. 1974 Mar 29;69(1):153–157. doi: 10.1016/0006-8993(74)90382-5. [DOI] [PubMed] [Google Scholar]
  21. TAKEUCHI A., TAKEUCHI N. Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo. J Gen Physiol. 1962 Jul;45:1181–1193. doi: 10.1085/jgp.45.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vyklicky L., Sykova E., Kriz N., Ujec E. Post-stimulation changes of extracellular potassium concentration in the spinal cord of the rat. Brain Res. 1972 Oct 27;45(2):608–611. doi: 10.1016/0006-8993(72)90492-1. [DOI] [PubMed] [Google Scholar]
  23. Vyklický L., Syková E., Kríz N. Slow potentials induced by changes of extracellular potassium in the spinal cord of the cat. Brain Res. 1975 Apr 4;87(1):77–80. doi: 10.1016/0006-8993(75)90782-9. [DOI] [PubMed] [Google Scholar]
  24. Weight F. F., Erulkar S. D. Modulation of synaptic transmitter release by repetitive postsynaptic action potentials. Science. 1976 Sep 10;193(4257):1023–1025. doi: 10.1126/science.7839. [DOI] [PubMed] [Google Scholar]
  25. Weight F. F., Erulkar S. D. Synaptic transmission and effects of temperature at the squid giant synapse. Nature. 1976 Jun 24;261(5562):720–722. doi: 10.1038/261720a0. [DOI] [PubMed] [Google Scholar]
  26. Young J. Z. The giant fibre synapse of Loligo. Brain Res. 1973 Jul 27;57(2):457–460. doi: 10.1016/0006-8993(73)90149-2. [DOI] [PubMed] [Google Scholar]
  27. ten Bruggencate G., Lux H. D., Liebl L. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat. Pflugers Arch. 1974;349(4):301–317. doi: 10.1007/BF00588416. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES