Abstract
1. Responses of cerebral cortical neurones to the microiontophoretic application of acetylcholine, noradrenaline, cyclic adenosine 3′,5′-monophosphate (cyclic AMP) and cyclic guanosine 3′,5′-monophosphate (cyclic GMP) were examined.
2. The application of acetylcholine and cyclic GMP to identified pyramidal tract neurones resulted in an increased frequency of firing in a large number of cells. Upon application of both substances to cells which could not be identified as pyramidal tract cells, a reduction in the frequency of spontaneous firing was sometimes observed.
3. Careful current controls had no effect on the cells discussed here, indicating that the observed responses were not due to the iontophoretic currents. Also, the electro-osmotic ejection of cyclic GMP (outward current) produced similar changes of cell firing to those which followed iontophoretic application (inward current).
4. The microiontophoretic application of atropine resulted in a blockade of acetylcholine responses while leaving responses to cyclic GMP unaffected. This suggests that cyclic GMP was not acting indirectly by releasing acetylcholine from presynaptic endings.
5. Ejection of cyclic GMP from solutions containing calcium ions produced responses comparable to those produced by cyclic GMP alone. It is unlikely therefore that cyclic GMP was causing excitation by chelating calcium.
6. Applications of noradrenaline and cyclic AMP produced a reduction in the spontaneous discharge rate of most neurones tested.
7. Phosphodiesterase inhibitors such as ICI 63,197 caused a potentiation of the noradrenaline responses of pyramidal tract neurones.
8. 5′-adenosine monophosphate produced a powerful depression of all cells to which it was applied. This action was blocked by aminophylline, suggesting the effect was mediated through an adenosine receptor. Responses to cyclic AMP were usually not abolished, but were reduced by about 50% in amplitude.
9. These results are consistent with the hypothesis that cyclic AMP may mediate some neuronal effects of noradrenaline and cyclic GMP may mediate some effects of acetylcholine. The results are also consistent with the suggestion that the two nucleotides may sometimes mediate opposite cellular responses to humoral stimuli.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. G., Haas H. L., Hösli L. Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurones. Brain Res. 1973 Jan 30;49(2):471–475. doi: 10.1016/0006-8993(73)90445-9. [DOI] [PubMed] [Google Scholar]
- Bevan P., Bradshaw C. M., Szabadi E. The effect of tricyclic antidepressants on cholinergic responses of single cortical neurones. Br J Pharmacol. 1975 Jan;53(1):29–36. doi: 10.1111/j.1476-5381.1975.tb07326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom F. E., Siggins G. R., Hoffer B. J. Interpreting the failures to confirm the depression of cerebellar Purkinje cells by cyclic AMP. Science. 1974 Aug 16;185(4151):627–629. doi: 10.1126/science.185.4151.627. [DOI] [PubMed] [Google Scholar]
- Bloom F. E., Stone T. W., Taylor D. A. Responses of identified cerebral cortical neurones to cyclic GMP and cyclic AMP. J Physiol. 1975 Mar;246(2):103P–104P. [PubMed] [Google Scholar]
- Bloom F. E. The role of cyclic nucleotides in central synaptic function. Rev Physiol Biochem Pharmacol. 1975;74:1–103. doi: 10.1007/3-540-07483-x_19. [DOI] [PubMed] [Google Scholar]
- Bloom F. E. To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 1974 May 16;14(10):1819–1834. doi: 10.1016/0024-3205(74)90400-7. [DOI] [PubMed] [Google Scholar]
- Chou W. S., Ho A. K., Loh H. H. Neurohormones on brain adenyl cyclase activity in vivo. Nat New Biol. 1971 Oct 27;233(43):280–281. doi: 10.1038/newbio233280a0. [DOI] [PubMed] [Google Scholar]
- Crawford J. M., Curtis D. R. Pharmacological studies on feline Betz cells. J Physiol. 1966 Sep;186(1):121–138. doi: 10.1113/jphysiol.1966.sp008024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. E. Antibronchoconstrictor activity of two new phosphodiesterase inhibitors, a triazolopyrazine (ICI 58 301) and a triazolopyrimidine (ICI 63 197). J Pharm Pharmacol. 1973 Sep;25(9):681–689. doi: 10.1111/j.2042-7158.1973.tb10048.x. [DOI] [PubMed] [Google Scholar]
- Ferrendelli J. A., Kinscherf D. A., Kipnis D. M. Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2114–2120. doi: 10.1016/0006-291x(72)90767-x. [DOI] [PubMed] [Google Scholar]
- Freedman R., Hoffer B. J., Woodward D. J. A quantitative microiontophoretic analysis of the responses of central neurones to noradrenaline: interactions with cobalt, manganese, verapamil and dichloroisoprenaline. Br J Pharmacol. 1975 Aug;54(4):529–539. doi: 10.1111/j.1476-5381.1975.tb07601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godfraind J. M., Pumain R., Siggins G. R., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate and norepinephrine: effect on purkinje cells in rat cerebellar cortex. Science. 1971 Dec 17;174(4015):1257–1259. doi: 10.1126/science.174.4015.1257. [DOI] [PubMed] [Google Scholar]
- Godfraind J. M., Pumain R., Siggins G. R., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate and norepinephrine: effect on purkinje cells in rat cerebellar cortex. Science. 1971 Dec 17;174(4015):1257–1259. doi: 10.1126/science.174.4015.1257. [DOI] [PubMed] [Google Scholar]
- Goldberg N. D., O'Dea R. F., Haddox M. K. Cyclic GMP. Adv Cyclic Nucleotide Res. 1973;3:155–223. [PubMed] [Google Scholar]
- Hoffer B. J., Siggins G. R., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 1971 Feb 5;25(3):523–534. doi: 10.1016/0006-8993(71)90458-6. [DOI] [PubMed] [Google Scholar]
- Hoffer B. J., Siggins G. R., Oliver A. P., Bloom F. E. Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: a unique class of synaptic responses. Ann N Y Acad Sci. 1971 Dec 30;185:531–549. doi: 10.1111/j.1749-6632.1971.tb45279.x. [DOI] [PubMed] [Google Scholar]
- Janiec W., Kroczak-Dziuba K., Herman Z. S. Effect of phenothiazine neuroleptic drugs and tricyclic antidepressants on phosphodiesterase activity in rat cerebral cortex. Psychopharmacologia. 1974;37(4):351–358. doi: 10.1007/BF00428921. [DOI] [PubMed] [Google Scholar]
- KRNJEVIC K., PHILLIS J. W. Acetylcholine-sensitive cells in the cerebral cortex. J Physiol. 1963 Apr;166:296–327. doi: 10.1113/jphysiol.1963.sp007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakiuchi S., Rall T. W. Studies on adenosine 3',5'-phosphate in rabbit cerebral cortex. Mol Pharmacol. 1968 Jul;4(4):379–388. [PubMed] [Google Scholar]
- Katz R. I., Chase T. N. Neurohumoral mechanisms in the brain slice. Adv Pharmacol Chemother. 1970;8:1–30. doi: 10.1016/s1054-3589(08)60592-x. [DOI] [PubMed] [Google Scholar]
- Kinscherf D. A., Chang M. M., Rubin E. H., Schneider D. R., Ferrendelli J. A. Comparison of the effects of depolarizing agents and neurotransmitters on regional CNS cyclic GMP levels in various animals. J Neurochem. 1976 Mar;26(3):527–530. doi: 10.1111/j.1471-4159.1976.tb01506.x. [DOI] [PubMed] [Google Scholar]
- Kostopoulos G. K., Limacher J. J., Phillis J. W. Action of various adenine derivatives on cerebellar Purkinje cells. Brain Res. 1975 Apr 25;88(1):162–165. doi: 10.1016/0006-8993(75)90966-x. [DOI] [PubMed] [Google Scholar]
- Krnjević K., Puil E., Werman R. Is cyclic guanosine monophosphate the internal 'second messenger' for cholinergic actions on central neurons? Can J Physiol Pharmacol. 1976 Apr;54(2):172–176. doi: 10.1139/y76-029. [DOI] [PubMed] [Google Scholar]
- Kuo J. F., Lee T. P., Reyes P. L., Walton K. G., Donnelly T. E., Jr, Greengard P. Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of quanosine 3',5'-monophosphate in various biological materials and a study of agents regulating its levels in heart and brain. J Biol Chem. 1972 Jan 10;247(1):16–22. [PubMed] [Google Scholar]
- Lake N., Jordan L. M. Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science. 1974 Feb 15;183(4125):663–664. doi: 10.1126/science.183.4125.663. [DOI] [PubMed] [Google Scholar]
- Lake N., Jordan L. M., Phillis J. W. Mechanism of noradrenaline action in cat cerebral cortex. Nat New Biol. 1972 Dec 20;240(103):249–250. doi: 10.1038/newbio240249a0. [DOI] [PubMed] [Google Scholar]
- Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mah H. D., Daly J. W. Adenosine-dependent formation of cyclic AMP in brain slices. Pharmacol Res Commun. 1976 Feb;8(1):65–79. doi: 10.1016/0031-6989(76)90030-8. [DOI] [PubMed] [Google Scholar]
- Mao C. C., Guidotti A., Costa E. The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res. 1974 Oct 25;79(3):510–514. doi: 10.1016/0006-8993(74)90449-1. [DOI] [PubMed] [Google Scholar]
- Nahorski S. R., Rogers K. J., Smith B. M. Proceedings: Regulation of the cyclic AMP concentration in chick brain by beta-adrenoreceptors and histamine H2 receptors. Br J Pharmacol. 1974 Sep;52(1):121P–121P. [PMC free article] [PubMed] [Google Scholar]
- Phillis J. W., Kostopoulos G. K. Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci. 1975 Oct 10;17(7):1085–1094. doi: 10.1016/0024-3205(75)90329-x. [DOI] [PubMed] [Google Scholar]
- Phillis J. W., Kostopoulos G. K., Limacher J. J. Depression of corticospinal cells by various purines and pyrimidines. Can J Physiol Pharmacol. 1974 Dec;52(6):1226–1229. doi: 10.1139/y74-162. [DOI] [PubMed] [Google Scholar]
- Salmoiraghi G. C., Weight F. Micromethods in neuropharmacology: an approach to the study of anesthetics. Anesthesiology. 1967 Jan-Feb;28(1):54–64. [PubMed] [Google Scholar]
- Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
- Sattin A., Rall T. W., Zanella J. Regulation of cyclic adenosine 3',5'-monophosphate levels in guinea-pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. J Pharmacol Exp Ther. 1975 Jan;192(1):22–32. [PubMed] [Google Scholar]
- Segal M., Bloom F. E. The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 1974 May 31;72(1):79–97. doi: 10.1016/0006-8993(74)90652-0. [DOI] [PubMed] [Google Scholar]
- Shoemaker W. J., Balentine L. T., Siggins G. R., Hoffer B. J., Henriksen S. J., Bloom F. E. Characteristics of the release of adenosine 3':5'-monophosphate from micropipets by microiontophoresis. J Cyclic Nucleotide Res. 1975;1(2):97–106. [PubMed] [Google Scholar]
- Siggins G. R., Henriksen S. J., Landis S. C. Electrophysiology of Purkinje neurons in the weaver mouse: iontophoresis of neurotransmitters and cyclic nucleotides, and stimulation of the nucleus locus coeruleus. Brain Res. 1976 Sep 10;114(1):53–69. doi: 10.1016/0006-8993(76)91007-6. [DOI] [PubMed] [Google Scholar]
- Siggins G. R., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate: possible mediator for norepinephrine effects on cerebellar Purkinje cells. Science. 1969 Sep 5;165(3897):1018–1020. doi: 10.1126/science.165.3897.1018. [DOI] [PubMed] [Google Scholar]
- Siggins G. R., Hoffer B. J., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 3. Evidence for mediation of norepinephrine effects by cyclic 3',5'-adenosine monophosphate. Brain Res. 1971 Feb 5;25(3):535–553. doi: 10.1016/0006-8993(71)90459-8. [DOI] [PubMed] [Google Scholar]
- Siggins G. R., Hoffer B. J., Ungerstedt U. Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 1974 Aug 15;15(4):779–792. doi: 10.1016/0024-3205(74)90516-5. [DOI] [PubMed] [Google Scholar]
- Siggins G. R., Oliver A. P., Hoffer B. J., Bloom F. E. Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science. 1971 Jan 15;171(3967):192–194. doi: 10.1126/science.171.3967.192. [DOI] [PubMed] [Google Scholar]
- Stone T. W. Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol. 1972 Sep;225(2):485–499. doi: 10.1113/jphysiol.1972.sp009951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone T. W. Cortical responses to pyramidal tract stimulation in the rat. Exp Neurol. 1972 Jun;35(3):492–502. doi: 10.1016/0014-4886(72)90119-7. [DOI] [PubMed] [Google Scholar]
- Stone T. W. Pharmacology of pyramidal tract cells in the cerebral cortex. Noradrenaline and related substances. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(4):333–346. doi: 10.1007/BF00501478. [DOI] [PubMed] [Google Scholar]
- Sutherland E. W., Robison G. A. The role of cyclic-3',5'-AMP in responses to catecholamines and other hormones. Pharmacol Rev. 1966 Mar;18(1):145–161. [PubMed] [Google Scholar]
- Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Petzold G., Greengard P. Guanosine 3',5'-monophosphate in sympathetic ganglia: increase assoicated with synaptic transmission. Science. 1974 Dec 6;186(4167):942–944. doi: 10.1126/science.186.4167.942. [DOI] [PubMed] [Google Scholar]
