Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 May;267(1):63–74. doi: 10.1113/jphysiol.1977.sp011801

Reduction of the duration of isovolumic relaxation in the ejecting left ventricle of the dog: residual volume clamping

Hiroyuki Suga 1,2,*, Ken-Ichi Yamakoshi 1,2
PMCID: PMC1283602  PMID: 874863

Abstract

1. The individual effects of stroke volume and speed of ejection on the duration of the isovolumic relaxation phase were analysed in the canine left ventricle with a constant end-systolic residual volume.

2. A new technique was employed to maintain the ventricular end-systolic residual volume at a desired constant value regardless of wide changes in stroke volume and speed of ejection in a given inotropic background.

3. The duration of isovolumic relaxation, which was defined to be the time taken for ventricular pressure to fall from its end-systolic level to its 75, 50 and 25% levels, markedly decreased with increases in stroke volume. The reduction amounted to as much as 30-50% when stroke volume was increased from zero (isovolumic) to 20-25 ml.

4. The degree of shortening of the duration of isovolumic relaxation was largely independent of changes in speed of ejection which ranged from about 100-800 ml./sec at a constant stroke volume of 15 ml.

5. It was therefore concluded that stroke volume itself could be a major determinant of the duration of isovolumic relaxation.

6. It was speculated that the mechanism of the observed phenomenon might be a manifestation of the uncoupling effect of muscle shortening on contractile state.

Full text

PDF
63

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodem R., Sonnenblick E. H. Deactivation of contraction by quick releases in the isolated papillary muscle of the cat. Effects of lever damping, caffeine, and tetanization. Circ Res. 1974 Feb;34(2):214–225. doi: 10.1161/01.res.34.2.214. [DOI] [PubMed] [Google Scholar]
  2. Brady A. J. Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed Proc. 1965 Nov-Dec;24(6):1410–1420. [PubMed] [Google Scholar]
  3. Brutsaert D. L., Claes V. A., Donders J. J. Effects of controlling the velocity of shortening on force-velocity-length and time relations in cat papillary muscle. Velocity clamping. Circ Res. 1972 Mar;30(3):310–315. doi: 10.1161/01.res.30.3.310. [DOI] [PubMed] [Google Scholar]
  4. Cohn P. F., Liedtke A. J., Serur J., Sonnenblick E. H., Urschel C. W. Maximal rate of pressure fall (peak negative dP-dt) during ventricular relaxation. Cardiovasc Res. 1972 May;6(3):263–267. doi: 10.1093/cvr/6.3.263. [DOI] [PubMed] [Google Scholar]
  5. Edman K. A. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol. 1975 Mar;246(1):255–275. doi: 10.1113/jphysiol.1975.sp010889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GLEASON W. L., BRAUNWALD E. Studies on the first derivative of the ventricular pressure pulse in man. J Clin Invest. 1962 Jan;41:80–91. doi: 10.1172/JCI104469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaufmann R. L., Bayer R. M., Harnasch C. Autoregulation of contractility in the myocardial cell. Displacement as a controlling parameter. Pflugers Arch. 1972;332(2):96–116. [PubMed] [Google Scholar]
  8. Morgenstern C., Arnold G., Höljes U., Lochner W. Die Druckanstiegsgeschwindigkeit im linken Ventrikel als Mass für die Kontraktilität unter verschiedenen hämodynamischen Bedingungen. Pflugers Arch. 1970;315(2):173–186. doi: 10.1007/BF00586659. [DOI] [PubMed] [Google Scholar]
  9. PRIOLA D. V., OSADJAN C. E., RANDALL W. C. FUNCTIONAL CHARACTERISTICS OF THE LEFT VENTRICULAR INFLOW AND OUTFLOW TRACTS. Circ Res. 1965 Aug;17:123–129. doi: 10.1161/01.res.17.2.123. [DOI] [PubMed] [Google Scholar]
  10. Parmley W. W., Sonnenblick E. H. Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol. 1969 May;216(5):1084–1091. doi: 10.1152/ajplegacy.1969.216.5.1084. [DOI] [PubMed] [Google Scholar]
  11. SCHAPER W. K., LEWI P., JAGENEAU A. H. THE DETERMINANTS OF THE RATE OF CHANGE OF THE LEFT VENTRICULAR PRESSURE (DP/DT). Arch Kreislaufforsch. 1965 Mar;46:27–41. doi: 10.1007/BF02120168. [DOI] [PubMed] [Google Scholar]
  12. Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117–126. doi: 10.1161/01.res.35.1.117. [DOI] [PubMed] [Google Scholar]
  13. Suga H., Sagawa K., Kostiuk D. P. Controls of ventricular contractility assessed by pressure-volume ration, Emax. Cardiovasc Res. 1976 Sep;10(5):582–592. doi: 10.1093/cvr/10.5.582. [DOI] [PubMed] [Google Scholar]
  14. Suga H., Sagawa K., Shoukas A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar;32(3):314–322. doi: 10.1161/01.res.32.3.314. [DOI] [PubMed] [Google Scholar]
  15. Suga H., Yamakoshi K. I. Left ventricle as a compression pump. Eur J Cardiol. 1976 May;4 (Suppl):97–103. [PubMed] [Google Scholar]
  16. Weisfeldt M. L., Scully H. E., Frederiksen J., Rubenstein J. J., Pohost G. M., Beierholm E., Bello A. G., Daggett W. M. Hemodynamic determinants of maximum negative dP-dt and periods of diastole. Am J Physiol. 1974 Sep;227(3):613–621. doi: 10.1152/ajplegacy.1974.227.3.613. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES