Abstract
1. The regulation of cerebrospinal fluid (c.s.f.) bicarbonate concentration was studied using the cat choroid plexus isolated in a chamber in situ. 2. Decreases in plasma bicarbonate concentration caused relatively small changes in the c.s.f. bicarbonate concentration. 3. Alterations in c.s.f. bicarbonate concentration (c.s.f. HCO3-=9 or 28 m-equiv/l.) were countered by changes in the bicarbonate concentration of the fluid produced by the plexus or in the rate of bicarbonate transport which returned c.s.f. bicarbonate towards normal. 4. There was significant regulation of pH in the choroid plexus fluid during hypocapnia and hypercapnia. 5. Alterations of plasma acid-base status did not significantly alter the potential difference across the choroid plexus. However, the potential difference increased when c.s.f. bicarbonate was increased and decreased when c.s.f. bicarbonate was decreased. 6. The data indicate that the bicarbonate concentration in the c.s.f. is actively regulated by the choroid plexus during acid-base disturbances occurring either systemically or in the c.s.f.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES A., 3rd, SAKANOUE M., ENDO S. NA, K, CA, MG, AND C1 CONCENTRATIONS IN CHOROID PLEXUS FLUID AND CISTERNAL FLUID COMPARED WITH PLASMA ULTRAFILTRATE. J Neurophysiol. 1964 Jul;27:672–681. doi: 10.1152/jn.1964.27.4.672. [DOI] [PubMed] [Google Scholar]
- Ames A., 3rd, Higashi K., Nesbett F. B. Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol. 1965 Dec;181(3):516–524. doi: 10.1113/jphysiol.1965.sp007780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arieff A. I., Kerian A., Massry S. G., DeLima J. Intracellular pH of brain: alterations in acute respiratory acidosis and alkalosis. Am J Physiol. 1976 Mar;230(3):804–812. doi: 10.1152/ajplegacy.1976.230.3.804. [DOI] [PubMed] [Google Scholar]
- Bledsoe S. W., Mines A. H. Effect of plasma [K+] on the DC potential and on ion distributions between CSF and blood. J Appl Physiol. 1975 Dec;39(6):1012–1016. doi: 10.1152/jappl.1975.39.6.1012. [DOI] [PubMed] [Google Scholar]
- Cameron I. R., Caronna J., Miller R. The effect of acute hyperkalaemia on the c.s.f.-blood potential difference and the control of c.s.f. pH. J Physiol. 1973 Jul;232(2):102P–103P. [PubMed] [Google Scholar]
- Cutler R. W., Barlow C. F. The effect of hypercapnia on brain permeability to protein. Arch Neurol. 1966 Jan;14(1):54–63. doi: 10.1001/archneur.1966.00470070058007. [DOI] [PubMed] [Google Scholar]
- Evans C. A., Reynolds J. M., Reynolds M. L., Saunders N. R. The effect of hypercapnia on a blood-brain barrier mechanism in foetal and new-born sheep. J Physiol. 1976 Mar;255(3):701–714. doi: 10.1113/jphysiol.1976.sp011304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fencl V., Miller T. B., Pappenheimer J. R. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol. 1966 Mar;210(3):459–472. doi: 10.1152/ajplegacy.1966.210.3.459. [DOI] [PubMed] [Google Scholar]
- Forster H. V., Dempsey J. A., Chosy L. W. Incomplete compensation of CSF [H+] in man during acclimatization to high altitude (48300 M). J Appl Physiol. 1975 Jun;38(6):1067–1072. doi: 10.1152/jappl.1975.38.6.1067. [DOI] [PubMed] [Google Scholar]
- HELD D., FENCL V., PAPPENHEIMER J. R. ELECTRICAL POTENTIAL OF CEREBROSPINAL FLUID. J Neurophysiol. 1964 Sep;27:942–959. doi: 10.1152/jn.1964.27.5.942. [DOI] [PubMed] [Google Scholar]
- Hasan F. M., Kazemi H. Dual contribution theory of regulation of CSF HCO3 in respiratory acidosis. J Appl Physiol. 1976 Apr;40(4):559–567. doi: 10.1152/jappl.1976.40.4.559. [DOI] [PubMed] [Google Scholar]
- Hochwald G. M., Malhan C., Brown J. Effect of hypercapnia on CSF turnover and blood-CSF barrier to protein. Arch Neurol. 1973 Mar;28(3):150–155. doi: 10.1001/archneur.1973.00490210030002. [DOI] [PubMed] [Google Scholar]
- Hodson W. A., Fenner A., Brumley G., Chernick V., Avery M. E. Cerebrospinal fluid and blood acid-base relationships in fetal and neonatal lambs and pregnant ewes. Respir Physiol. 1968 May;4(3):322–332. doi: 10.1016/0034-5687(68)90038-8. [DOI] [PubMed] [Google Scholar]
- Hornbein T. F., Pavlin E. G. Distribution of H+ and HCO3 minus between CSF and blood during respiratory alkalosis in dogs. Am J Physiol. 1975 Apr;228(4):1149–1154. doi: 10.1152/ajplegacy.1975.228.4.1149. [DOI] [PubMed] [Google Scholar]
- Husted R. F., Reed D. J. Regulation of cerebrospinal fluid potassium by the cat choroid plexus. J Physiol. 1976 Jul;259(1):213–221. doi: 10.1113/jphysiol.1976.sp011462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johanson C. E., Woodbury D. M., Withrow C. D. Distribution of bicarbonate between blood and cerebrospinal fluid in the neonatal rat in metabolic acidosis and alkalosis. Life Sci. 1976 Sep 1;19(5):691–700. doi: 10.1016/0024-3205(76)90166-1. [DOI] [PubMed] [Google Scholar]
- Kazemi H., Shannon D. C., Carvallo-Gil E. Brain CO2 buffering capacity in respiratory acidosis and alkalosis. J Appl Physiol. 1967 Feb;22(2):241–246. doi: 10.1152/jappl.1967.22.2.241. [DOI] [PubMed] [Google Scholar]
- Kazemi H., Shore N. S., Shih V. E., Shannon D. C. Brain organic buffers in respiratory acidosis and alkalosis. J Appl Physiol. 1973 Apr;34(4):478–482. doi: 10.1152/jappl.1973.34.4.478. [DOI] [PubMed] [Google Scholar]
- Kjällquist A., Nardini M., Siesjö B. K. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969 Aug;76(4):485–494. doi: 10.1111/j.1748-1716.1969.tb04495.x. [DOI] [PubMed] [Google Scholar]
- Kjällquist A., Siesjö B. K. The CSF-blood potential in sustained acidosis and alkalosis in the rat. Acta Physiol Scand. 1967 Oct-Nov;71(2):255–256. doi: 10.1111/j.1748-1716.1967.tb03732.x. [DOI] [PubMed] [Google Scholar]
- Kjällquist A. The CSF-blood potential in sustained acid-base changes in the rat. With calculations of electrochemical potential differences for H+ and HCO3. Acta Physiol Scand. 1970 Jan;78(1):85–93. doi: 10.1111/j.1748-1716.1970.tb04642.x. [DOI] [PubMed] [Google Scholar]
- LENDING M., SLOBODY L. B., MESTERN J. Effect of hyperoxia, hypercapnia, and hypoxia on blood-cerebrospinal fluid barrier. Am J Physiol. 1961 May;200:959–962. doi: 10.1152/ajplegacy.1961.200.5.959. [DOI] [PubMed] [Google Scholar]
- Lee J. E., Chu F., Posner J. B., Plum F. Buffering capacity of cerebrospinal fluid in acute respiratory acidosis in dogs. Am J Physiol. 1969 Oct;217(4):1035–1038. doi: 10.1152/ajplegacy.1969.217.4.1035. [DOI] [PubMed] [Google Scholar]
- MITCHELL R. A., HERBERT D. A., CARMAN C. T. ACID-BASE CONSTANTS AND TEMPERATURE COEFFICIENTS FOR CEREBROSPINAL FLUID. J Appl Physiol. 1965 Jan;20:27–30. doi: 10.1152/jappl.1965.20.1.27. [DOI] [PubMed] [Google Scholar]
- MOTTSCHALL H. J., LOESCHCKE H. H. MESSUNGEN DES TRANSMENINGEALEN POTENTIALS DER KATZE BEI ANDERUNG DES CO2-DRUCKS UND DER H+-IONEN-KONZENTRATION IM BLUT. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:662–670. [PubMed] [Google Scholar]
- Miner L. C., Reed D. J. Composition of fluid obtained from choroid plexus tissue isolated in a chamber in situ. J Physiol. 1972 Dec;227(1):127–139. doi: 10.1113/jphysiol.1972.sp010023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson L., Busto R. Controlled hyperventilation and its effect on brain energy and acid-base parameters. Acta Anaesthesiol Scand. 1973;17(4):243–252. doi: 10.1111/j.1399-6576.1973.tb00837.x. [DOI] [PubMed] [Google Scholar]
- Pannier J. L., Weyne J., Leusen I. The CDF-blood potential and the regulation of the bicarbonate concentration of CSF during acidosis in the cat. Life Sci I. 1971 Mar 1;10(5):287–300. doi: 10.1016/0024-3205(71)90316-x. [DOI] [PubMed] [Google Scholar]
- Pavlin E. G., Hornbein ttf Distribution of H+ and HCO3 minus between CSF and blood during metabolic alkalosis in dogs. Am J Physiol. 1975 Apr;228(4):1141–1144. doi: 10.1152/ajplegacy.1975.228.4.1141. [DOI] [PubMed] [Google Scholar]
- Pavlin E. G., Hornbein T. F. Distribution of H+ and HCO3 minus between CSF and blood during metabolic acidosis in dogs. Am J Physiol. 1975 Apr;228(4):1134–1140. doi: 10.1152/ajplegacy.1975.228.4.1134. [DOI] [PubMed] [Google Scholar]
- Pavlin E. G., Hornbein T. F. Distribution of H+ and HCO3 minus between CSF and blood during respiratory acidosis in dogs. Am J Physiol. 1975 Apr;228(4):1145–1148. doi: 10.1152/ajplegacy.1975.228.4.1145. [DOI] [PubMed] [Google Scholar]
- Pesce M. A., Strande C. S. A new micromethod for determination of protein in cerebrospinal fluid and urine. Clin Chem. 1973 Nov;19(11):1265–1267. [PubMed] [Google Scholar]
- Pontén U., Siesjö B. K. Acid-base relations in arterial blood and cerebrospinal fluid of the unanesthetized rat. Acta Physiol Scand. 1967 Sep;71(1):89–95. doi: 10.1111/j.1748-1716.1967.tb03713.x. [DOI] [PubMed] [Google Scholar]
- Pontén U., Siesjö B. K. Gradients of CO2 tension in the brain. Acta Physiol Scand. 1966 Jun;67(2):129–140. doi: 10.1111/j.1748-1716.1966.tb03294.x. [DOI] [PubMed] [Google Scholar]
- SEVERINGHAUS J. W., MITCHELL R. A., RICHARDSON B. W., SINGER M. M. RESPIRATORY CONTROL AT HIGH ALTITUDE SUGGESTING ACTIVE TRANSPORT REGULATION OF CSF PH. J Appl Physiol. 1963 Nov;18:1155–1166. doi: 10.1152/jappl.1963.18.6.1155. [DOI] [PubMed] [Google Scholar]
- Shibata H., Saitoh Y., Takahashi H., Okubo T. The apparent buffer value of cerebrospinal fluid in acute hypercapnia. Bull Eur Physiopathol Respir. 1976 Mar-Apr;12(2):297–315. [PubMed] [Google Scholar]
- Siesjö B. K. Symposium on acid-base homeostasis. The regulation of cerebrospinal fluid pH. Kidney Int. 1972 May;1(5):360–374. doi: 10.1038/ki.1972.47. [DOI] [PubMed] [Google Scholar]
- Van Vaerenbergh P. J., Demeester G., Leusen I. Lactate in cerebrospinal fluid during hyperventilation. Arch Int Physiol Biochim. 1965 Dec;73(5):738–747. doi: 10.3109/13813456509084897. [DOI] [PubMed] [Google Scholar]
- Vogh B. P., Maren T. H. Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. Am J Physiol. 1975 Mar;228(3):673–683. doi: 10.1152/ajplegacy.1975.228.3.673. [DOI] [PubMed] [Google Scholar]
- WELCH K., SADLER K. ELECTRICAL POTENTIALS OF CHOROID PLEXUS OF THE RABBIT. J Neurosurg. 1965 Apr;22:344–351. doi: 10.3171/jns.1965.22.4.0344. [DOI] [PubMed] [Google Scholar]
- Wichser J., Kazemi H. CSF bicarbonate regulation in respiratory acidosis and alkalosis. J Appl Physiol. 1975 Mar;38(3):504–511. doi: 10.1152/jappl.1975.38.3.504. [DOI] [PubMed] [Google Scholar]
- Williams J. A., Withrow C. D., Woodbury D. M. Effects of ouabain and diphenylhydantoin on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J Physiol. 1971 Jan;212(1):101–115. doi: 10.1113/jphysiol.1971.sp009312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woody C. D., Marshall W. H., Besson J. M., Thompson H. K., Aleonard P., Albe-Fessard D. Brain potential shift with respiratory acidosis in the cat and monkey. Am J Physiol. 1970 Jan;218(1):275–283. doi: 10.1152/ajplegacy.1970.218.1.275. [DOI] [PubMed] [Google Scholar]
