Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jun;267(3):791–810. doi: 10.1113/jphysiol.1977.sp011838

Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.

PMCID: PMC1283640  PMID: 17740

Abstract

1. The intracellular pH (pHi) of surface fibres of the mouse soleus muscle has been measured in vitro using recessed-tip pH-sensitive microelectrodes. 2. In 5% CO2 and pH 7-40, the mean pHi was 7-07 +/- 0-007 (S.E. of mean) at 37 degrees C and 7-23 +/- 0-01 at 28 degrees C. The difference between these tow values is the same as the change in neutral pH between 37 and 28 degrees C. 3. Alteration of the CO2 level at constant external pH caused a biphasic change in pHi with a rapid displacement followed by a slower partial recovery. Because the recovery was incomplete, different stable pHi values were recorded at different CO2 levels, the higher the CO2 the lower the pHi. The differences in pHi were highly significant both at 37 and 28 degrees C. 4. Alteration of the CO2 level at constant external pH also changed the membrane potential (Em), an increase in CO2 leading to an increased Em. The dependence of Em on the CO2 level was much smaller in the fast-twitch muscle, extensor digitorum longus, than in soleus. 5. Changing external pH, either by alteration of the bicarbonate or CO2 level of the Ringer solution, caused pHi to change by a mean 38-7% of the external pH change. The change in pHi was accomplished about 10 times more rapidly, and in the same direction, by altering CO2 than by altering the bicarbonate. 6. Application of external NH3 and NH+4 caused a rapid intracellular alkalinization followed by a slower acidification. On removal of external NH3 and NH+4, there was a large and rapid acdification, followed by a fairly rapid recovery in pHi. 7. The size of the pHi changes occurring on alteration of the CO2 level at both constant external pH and constant external bicarbonate, and on removal of external NH3 and NH+4, suggests a non-CO2 buffering power of 45m-equiv H+ ions/pH unit per litre and a constant-CO2 buffering power of 58 m-equiv H+ ions/pH unit per litre. The buffering power was apparently unaffected by a change in temperature between 37 and 28 degrees C. 8. It was concluded that H+ ions are not passively distributed across the muscle cell membrane, and that the pHi is closely controlled by the active transport of H+, OH- or HCO-3 ions.

Full text

PDF
791

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADLER S., ROY A., RELMAN A. S. INTRACELLULAR ACID-BASE REGULATION. I. THE RESPONSE OF MUSCLE CELLS TO CHANGES IN CO2 TENSION OR EXTRACELLULAR BICARBONATE CONCENTRATION. J Clin Invest. 1965 Jan;44:8–20. doi: 10.1172/JCI105129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Addanki S., Cahill F. D., Sotos J. F. Intramitochondrial pH and intra-extramitochondrial pH gradient of beef heart mitochondria in various functional states. Nature. 1967 Apr 22;214(5086):400–402. doi: 10.1038/214400b0. [DOI] [PubMed] [Google Scholar]
  3. Adler S. The simultaneous determination of muscle cell pH using a weak acid and weak base. J Clin Invest. 1972 Feb;51(2):256–265. doi: 10.1172/JCI106810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aickin C. C., Thomas R. C. Intracellular pH of mouse soleus muscle [proceedings]. J Physiol. 1976 Sep;260(2):25P–26P. [PMC free article] [PubMed] [Google Scholar]
  5. Aickin C. C., Thomas R. C. Micro-electrode measurement of the internal pH of crab muscle fibres. J Physiol. 1975 Nov;252(3):803–815. doi: 10.1113/jphysiol.1975.sp011171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Albuquerque E. X., McIsaac R. J. Fast and slow mammalian muscles after denervation. Exp Neurol. 1970 Jan;26(1):183–202. doi: 10.1016/0014-4886(70)90099-3. [DOI] [PubMed] [Google Scholar]
  7. Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campion D. S. Resting membrane potential and ionic distribution in fast- and slow-twitch mammalian muscle. J Clin Invest. 1974 Sep;54(3):514–518. doi: 10.1172/JCI107787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carter M. J. Carbonic anhydrase: isoenzymes, properties, distribution, and functional significance. Biol Rev Camb Philos Soc. 1972 Nov;47(4):465–513. doi: 10.1111/j.1469-185x.1972.tb01079.x. [DOI] [PubMed] [Google Scholar]
  10. Carter N. W., Rector F. C., Jr, Campion D. S., Seldin D. W. Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes. J Clin Invest. 1967 Jun;46(6):920–933. doi: 10.1172/JCI105598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clancy R. L., Brown E. B., Jr In vivo CO-2 buffer curves of skeletal and cardiac muscle. Am J Physiol. 1966 Dec;211(6):1309–1312. doi: 10.1152/ajplegacy.1966.211.6.1309. [DOI] [PubMed] [Google Scholar]
  12. ECKEL R. E., BOTSCHNER A. W., WOOD D. H. The pH of K-deficient muscle. Am J Physiol. 1959 Apr;196(4):811–818. doi: 10.1152/ajplegacy.1959.196.4.811. [DOI] [PubMed] [Google Scholar]
  13. Ellis D., Thomas R. C. Microelectrode measurement of the intracellular pH of mammalian heart cells. Nature. 1976 Jul 15;262(5565):224–225. doi: 10.1038/262224a0. [DOI] [PubMed] [Google Scholar]
  14. Furusawa K., Kerridge P. M. The hydrogen ion concentration of the muscles of the cat. J Physiol. 1927 Jun 7;63(1):33–41. doi: 10.1113/jphysiol.1927.sp002378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gonzalez N. C., Brown E. B., Jr Changes in skeletal muscle cell pH during graded changes in PCO2. Respir Physiol. 1976 Apr;26(2):207–212. doi: 10.1016/0034-5687(76)90098-0. [DOI] [PubMed] [Google Scholar]
  16. Hannan S. F., Wiggins P. M. Intracellular pH of frog sartorius muscle. Biochim Biophys Acta. 1976 Mar 25;428(1):205–222. doi: 10.1016/0304-4165(76)90121-5. [DOI] [PubMed] [Google Scholar]
  17. Heisler N. Intracellular pH of isolated rat diaphragm muscle with metabolic and respiratory changes of extracellular pH. Respir Physiol. 1975 Mar;23(2):243–255. doi: 10.1016/0034-5687(75)90063-8. [DOI] [PubMed] [Google Scholar]
  18. Heisler N., Piiper J. Determination of intracellular buffering properties in rat diaphragm muscle. Am J Physiol. 1972 Mar;222(3):747–753. doi: 10.1152/ajplegacy.1972.222.3.747. [DOI] [PubMed] [Google Scholar]
  19. Hille B. Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol. 1973 Jun;61(6):669–686. doi: 10.1085/jgp.61.6.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JACQUEZ J. A., POPPELL J. W., JELTSCH R. Solubility of ammonia in human plasma. J Appl Physiol. 1959 Mar;14(2):255–258. doi: 10.1152/jappl.1959.14.2.255. [DOI] [PubMed] [Google Scholar]
  21. Matthews C. M., Laszlo G., Campbell E. J., Kibby P. M., Freedman S. Exchange of 11CO2 in arterial blood with body CO2 pools. Respir Physiol. 1968 Dec;6(1):29–44. doi: 10.1016/0034-5687(68)90017-0. [DOI] [PubMed] [Google Scholar]
  22. Paillard M. Direct intracellular pH measurement in rat and crab muscle. J Physiol. 1972 Jun;223(2):297–319. doi: 10.1113/jphysiol.1972.sp009848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poole-Wilson P. A., Cameron I. R. Intracellular pH and K+ of cardiac and skeletal muscle in acidosis and alkalosis. Am J Physiol. 1975 Nov;229(5):1305–1310. doi: 10.1152/ajplegacy.1975.229.5.1305. [DOI] [PubMed] [Google Scholar]
  24. Roos A. Intracellular pH and buffering power of rat muscle. Am J Physiol. 1971 Jul;221(1):182–188. doi: 10.1152/ajplegacy.1971.221.1.182. [DOI] [PubMed] [Google Scholar]
  25. Roos A. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm. J Physiol. 1975 Jul;249(1):1–25. doi: 10.1113/jphysiol.1975.sp011000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saborowski F., Lang D., Albers C. Intracellular pH and buffer curves of cardiac muscle in rats as affected by temperature. Respir Physiol. 1973 Jul;18(2):161–170. doi: 10.1016/0034-5687(73)90046-7. [DOI] [PubMed] [Google Scholar]
  27. Schloerb P. R., Blackburn G. L., Grantham J. J. Carbon dioxide dissociation curve in potassium depletion. Am J Physiol. 1967 Apr;212(4):953–956. doi: 10.1152/ajplegacy.1967.212.4.953. [DOI] [PubMed] [Google Scholar]
  28. Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thomas R. C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol. 1976 Mar;255(3):715–735. doi: 10.1113/jphysiol.1976.sp011305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Waddell W. J., Bates R. G. Intracellular pH. Physiol Rev. 1969 Apr;49(2):285–329. doi: 10.1152/physrev.1969.49.2.285. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES