Abstract
1. The permeability of the human erythrocyte to anions has been measured under conditions of net charge transfer: for Cl- and HCO3- ions, at 37° C, this permeability is 5 orders of magnitude too small to account for the rate of the electroneutral anion exchange which is responsible for the chloride, or Hamburger, shift.
2. The method is an indirect one in which the ionophore, valinomycin, is used to increase the erythrocyte K+ permeability: in the absence of permeant cation externally, the rate of the resulting K+ efflux may be limited by the slowness of the accompanying anion efflux, allowing the true anion permeability to be estimated.
3. The average Cl- permeability estimated in ACD-stored erythrocytes (seven experiments) and erythrocytes from fresh blood (two experiments) was 2·1 × 10-8 cm/sec at 37° C and pH 7·4: this may also be expressed as a Cl- conductance of about 1·0 × 10-5 Ω-1 cm-2. The apparent activation energy for net efflux of Cl- was found to be 3·9 kJ/mole (16·4 kcal/mole).
4. In fresh cells, the ratios of Cl-, HCO3-, Br- and I- permeabilities (or conductances) were 1:0·8:1·5:5. The three halide ions follow Eisenman's Sequence I, representing a binding site of low field strength.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H. Rectification in muscle membrane. Prog Biophys Mol Biol. 1969;19(2):339–369. [PubMed] [Google Scholar]
- Brading A. F., Jones A. W. Distribution and kinetics of CoEDTA in smooth muscle, and its use as an extracellular marker. J Physiol. 1969 Feb;200(2):387–401. doi: 10.1113/jphysiol.1969.sp008700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Potassium, sodium, and water in normal human red blood cells. Scand J Clin Lab Invest. 1966;18(2):167–180. doi: 10.3109/00365516609051812. [DOI] [PubMed] [Google Scholar]
- GIBSON J. G., 2nd, MURPHY W. P., Jr, REES S. B., SCHEITLIN W. A. The influence of extracelluar factors involved in the collection of blood in ACD on maintenance of red cell viability during refrigerated storage. Am J Clin Pathol. 1956 Aug;26(8):855–873. doi: 10.1093/ajcp/26.8.855. [DOI] [PubMed] [Google Scholar]
- Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- Harris E. J., Pressman B. C. Obligate cation exchanges in red cells. Nature. 1967 Dec 2;216(5118):918–920. doi: 10.1038/216918a0. [DOI] [PubMed] [Google Scholar]
- Hunter M. J. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol. 1971 Oct;218 (Suppl):49P–50P. [PubMed] [Google Scholar]
- JOHNSON S. L., WOODBURY J. W. MEMBRANE RESISTANCE OF HUMAN RED CELLS. J Gen Physiol. 1964 May;47:827–837. doi: 10.1085/jgp.47.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Rothstein A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol. 1971 Aug;58(2):190–210. doi: 10.1085/jgp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lassen U. V., Sten-Knudsen O. Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol. 1968 Apr;195(3):681–696. doi: 10.1113/jphysiol.1968.sp008482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
- Manninen V. Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle. Acta Physiol Scand Suppl. 1970;355:1–76. [PubMed] [Google Scholar]
- McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
- Scarpa A., Cecchetto A., Azzone G. F. Permeability of erythrocytes to anions and the regulation of cell volume. Nature. 1968 Aug 3;219(5153):529–531. doi: 10.1038/219529a0. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Cecchetto A., Azzone G. F. The mechanism of anion translocation and pH equilibration in erythrocytes. Biochim Biophys Acta. 1970;219(1):179–188. doi: 10.1016/0005-2736(70)90073-8. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. Prog Biophys Mol Biol. 1973;26:103–146. doi: 10.1016/0079-6107(73)90018-7. [DOI] [PubMed] [Google Scholar]
- Tosteson D. C. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes. Fed Proc. 1968 Nov-Dec;27(6):1269–1277. [PubMed] [Google Scholar]
- Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]