Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jun;268(2):371–390. doi: 10.1113/jphysiol.1977.sp011862

Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia

T Forrester 1, Carole A Williams 1
PMCID: PMC1283669  PMID: 141503

Abstract

1. Adult rat heart cells were isolated enzymically and ATP was identified in the cell suspension using the firefly luminescence technique. Adenosine 5′-triphosphate (ATP) was not detected from cell suspensions obtained from hearts which had been left asystolic for 10 min.

2. It was found that ATP 0·34 ± 0·22 μM/mg protein was released by cells kept in an oxygenated condition, while ATP 1·28 ± 0·41 μM/mg protein was initially released by cells made hypoxic.

3. Addition of Ca2+ in a concentration of 2 mM caused cells to initially extrude ATP 0·40 ± 0·14 μM/mg protein. This was attributed to an inotropic effect.

4. Extracellular ATPase activity in the fluid suspension was partially characterized, giving a Km of 13 μM and a V/2 of hydrolysed ATP 18·3 μM/min at 37° C. Q10 was found to be 4 between 25 and 37° C. Enzyme activity remained unaffected by either hypoxic conditions or ouabain.

5. If these amounts of ATP are released from myocardial cells rendered hypoxic in vivo, then it must be concluded that ATP plays a principal role in the local control of myocardial blood flow.

6. It is proposed that release of ATP occurs through the sarcolemma from an intracellular pool, and that alteration of the configuration of structural membrane protein controls the amounts of ATP extruded.

Full text

PDF
371

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABOOD L. G., KOKETSU K., MIYAMOTO S. Outflux of various phosphates during membrane depolarization of excitable tissues. Am J Physiol. 1962 Mar;202:469–474. doi: 10.1152/ajplegacy.1962.202.3.469. [DOI] [PubMed] [Google Scholar]
  2. Abood L. G., Matsubara A. Properties of an ATP-binding protein isolated from membranes of nerve endings. Biochim Biophys Acta. 1968 Dec 10;163(4):539–549. doi: 10.1016/0005-2736(68)90083-7. [DOI] [PubMed] [Google Scholar]
  3. Afonso S., Ansfield T. J., Berndt T. B., Rowe G. G. Coronary vasodilator responses to hypoxia before and after aminophylline. J Physiol. 1972 Mar;221(3):589–599. doi: 10.1113/jphysiol.1972.sp009769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BALFOUR W. M., SAMSON F. E., Jr Transphosphorylases in the firefly lantern. Arch Biochem Biophys. 1959 Sep;84:140–142. doi: 10.1016/0003-9861(59)90562-4. [DOI] [PubMed] [Google Scholar]
  5. BERNE R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963 Feb;204:317–322. doi: 10.1152/ajplegacy.1963.204.2.317. [DOI] [PubMed] [Google Scholar]
  6. BERNE R. M. REGULATION OF CORONARY BLOOD FLOW. Physiol Rev. 1964 Jan;44:1–29. doi: 10.1152/physrev.1964.44.1.1. [DOI] [PubMed] [Google Scholar]
  7. Barcroft J., Dixon W. E. The gaseous metabolism of the mammalian heart: Part I. J Physiol. 1907 Mar 25;35(3):182–204. doi: 10.1113/jphysiol.1907.sp001189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berry M. N., Friend D. S., Scheuer J. Morphology and metabolism of intact muscle cells isolated from adult rat heart. Circ Res. 1970 Jun;26(6):679–687. doi: 10.1161/01.res.26.6.679. [DOI] [PubMed] [Google Scholar]
  9. Boyd I. A., Forrester T. The release of adenosine triphosphate from frog skeletal muscle in vitro. J Physiol. 1968 Nov;199(1):115–135. doi: 10.1113/jphysiol.1968.sp008642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burns A. H., Reddy W. J. Direct effect of thyroid hormones on glucose oxidation by isolated rat cardiac myocytes. J Mol Cell Cardiol. 1975 Aug;7(8):553–561. doi: 10.1016/0022-2828(75)90114-5. [DOI] [PubMed] [Google Scholar]
  11. Cow D. Some reactions of surviving arteries. J Physiol. 1911 Mar 28;42(2):125–143. doi: 10.1113/jphysiol.1911.sp001428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drury A. N., Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929 Nov 25;68(3):213–237. doi: 10.1113/jphysiol.1929.sp002608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fabiato A., Fabiato F. Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemmas. Calcium-dependent cyclic and tonic contractions. Circ Res. 1972 Sep;31(3):293–307. doi: 10.1161/01.res.31.3.293. [DOI] [PubMed] [Google Scholar]
  14. Forrester T. An estimate of adenosine triphosphate release into the venous effluent from exercising human forearm muscle. J Physiol. 1972 Aug;224(3):611–628. doi: 10.1113/jphysiol.1972.sp009915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Forrester T., Lind A. R. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol. 1969 Oct;204(2):347–364. doi: 10.1113/jphysiol.1969.sp008917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Forrester T., Morrison L. M. Proceedings: Fate of adenosine triphosphate in human plasma. J Physiol. 1975 Jun;248(1):25P–26P. [PubMed] [Google Scholar]
  17. Glick M. R., Burns A. H., Reddy W. J. Glucose and octanoate utilization by isolated adult rat heart cells. Life Sci. 1974 Apr 16;14(8):1473–1485. doi: 10.1016/0024-3205(74)90158-1. [DOI] [PubMed] [Google Scholar]
  18. HOLTON P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959 Mar 12;145(3):494–504. doi: 10.1113/jphysiol.1959.sp006157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hilton R., Eichholtz F. The influence of chemical factors on the coronary circulation. J Physiol. 1925 Mar 31;59(6):413–425. doi: 10.1113/jphysiol.1925.sp002200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holmsen I., Holmsen H. Partial purification and characterization of an ADP phosphohydrolase from human plasma. Thromb Diath Haemorrh. 1971 Aug 31;26(1):177–191. [PubMed] [Google Scholar]
  21. Israël M., Lesbats B., Meunier F. M., Stinnakre J. Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc R Soc Lond B Biol Sci. 1976 Jun 30;193(1113):461–468. doi: 10.1098/rspb.1976.0058. [DOI] [PubMed] [Google Scholar]
  22. KOKETSU K., MIYAMOTO S. Release of calcium-45 from frog nerves during electrical activity. Nature. 1961 Feb 4;189:402–403. doi: 10.1038/189402a0. [DOI] [PubMed] [Google Scholar]
  23. KUPERMAN A. S., OKAMOTO M., BEYER A. M., VOLPERT W. A. PROCAINE ACTION: ANTAGONISM BY ADENOSINE TRIPHOSPHATE AND OTHER NUCLEOTIDES. Science. 1964 Jun 5;144(3623):1222–1223. doi: 10.1126/science.144.3623.1222. [DOI] [PubMed] [Google Scholar]
  24. KUPERMAN A. S., VOLPERT W. A., OKAMOTO M. RELEASE OF ADENINE NUCLEOTIDE FROM NERVE AXONS. Nature. 1964 Dec 5;204:1000–1001. doi: 10.1038/2041000a0. [DOI] [PubMed] [Google Scholar]
  25. Kimmich G. A., Randles J., Brand J. S. Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Anal Biochem. 1975 Nov;69(1):187–206. doi: 10.1016/0003-2697(75)90580-1. [DOI] [PubMed] [Google Scholar]
  26. Kono T. Destruction and restoration of the insulin effector system of isolated fat cells. J Biol Chem. 1969 Nov 10;244(21):5777–5784. [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Markwalder J., Starling E. H. A note on some factors which determine the blood-flow through the coronary circulation. J Physiol. 1913 Dec 19;47(4-5):275–285. doi: 10.1113/jphysiol.1913.sp001624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moustafa E., Skomedal T., Osnes J. B., Oye I. Cyclic AMP formation and morphology of myocardial cells isolated from adult heart: effect of Ca2+ and Mg2+. Biochim Biophys Acta. 1976 Feb 24;421(2):411–415. doi: 10.1016/0304-4165(76)90308-1. [DOI] [PubMed] [Google Scholar]
  30. OKAMOTO M., ASKARI A., KUPERMAN A. S. THE STABILIZING ACTIONS OF ADENOSINE TRIPHOSPHATE AND RELATED NUCLEOTIDES ON CALCIUM-DEFICIENT NERVE. J Pharmacol Exp Ther. 1964 May;144:229–235. [PubMed] [Google Scholar]
  31. Paddle B. M., Burnstock G. Release of ATP from perfused heart during coronary vasodilatation. Blood Vessels. 1974;11(3):110–119. doi: 10.1159/000158005. [DOI] [PubMed] [Google Scholar]
  32. Parker J. C. Metabolism of external adenine nucleotides by human red blood cells. Am J Physiol. 1970 Jun;218(6):1568–1574. doi: 10.1152/ajplegacy.1970.218.6.1568. [DOI] [PubMed] [Google Scholar]
  33. Silinsky E. M., Hubbard J. I. Thermal synthesis of amino acids from a simulated primitive atmosphere. Nature. 1973 Jun 15;243(5407):404–405. doi: 10.1038/243404a0. [DOI] [PubMed] [Google Scholar]
  34. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  35. Vahouny G. V., Wei R., Starkweather R., Davis C. Preparation of beating heart cells from adult rats. Science. 1970 Mar 20;167(3925):1616–1618. doi: 10.1126/science.167.3925.1616. [DOI] [PubMed] [Google Scholar]
  36. WILLIAMSON J. R., DIPIETRO D. L. EVIDENCE FOR EXTRACELLULAR ENZYMIC ACTIVITY OF THE ISOLATED PERFUSED RAT HEART. Biochem J. 1965 Apr;95:226–232. doi: 10.1042/bj0950226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WINBURY M. M., PAPIERSKI D. H., HEMMER M. L., HAMBOURGER W. E. Coronary dilator action of the adenine-ATP series. J Pharmacol Exp Ther. 1953 Nov;109(3):255–260. [PubMed] [Google Scholar]
  38. WOLF M. M., BERNE R. M. Coronary vasodilator properties of purine and pyrimidine derivatives. Circ Res. 1956 May;4(3):343–348. doi: 10.1161/01.res.4.3.343. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES