Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jul;269(2):395–405. doi: 10.1113/jphysiol.1977.sp011908

The effect of prostaglandin synthesis inhibitors on renal blood flow distribution in conscious rabbits.

L J Beilin, J Bhattacharya
PMCID: PMC1283719  PMID: 894599

Abstract

1. We have studied the effects of two prostaglandin synthesis inhibitors on renal cortical blood flow distribution in conscious rabbits. 2. Renal blood flow distribution was estimated by means of radioactive microspheres injected into chronically implanted left atrial cannulae. Cardiac output was measured by a thermodilution technique. 3. Measurements were made in groups of animals treated with either indomethacin, meclofenamate or control injections of phosphate buffer. 4. A method of microtome slicing of the renal cortex was developed to standardize measurements. Microtome sections were grouped into inner, middle and outer zones. After both indomethacin and meclofenamate there was a reduction in total renal blood flow with a redistribution of flow from inner to outer cortex. 5. Estimated renal vascular resistance rose in all three cortical zones. 6. The data support the hypothesis that renal prostaglandin synthesis is necessary for maintaining flow to the deep cortex. It is suggested that renal prostaglandins may also influence flow in more superficial zones. 7. Estimated total systemic vascular resistance was increased both with meclofenamate and indomethacin, suggesting an inhibiting effect of prostaglandins on arteriolar tone throughout a major part of the systemic circulartion.

Full text

PDF
395

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bankir L., Farman N., Grünfeld J. P., De la Tour E. H., Funck-Brentano J. L. Radioactive microsphere distribution and single glomerular blood flow in the normal rabbit kidney. Pflugers Arch. 1973 Aug 17;342(2):111–123. doi: 10.1007/BF00587842. [DOI] [PubMed] [Google Scholar]
  2. Crowshaw K. The incorporation of (1-14C) arachidonic acid into the lipids of rabbit renal slices and conversion to prostaglandins E2 and F2 . Prostaglandins. 1973 May;3(5):607–620. doi: 10.1016/0090-6980(73)90098-1. [DOI] [PubMed] [Google Scholar]
  3. Daniels E. G., Hinman J. W., Leach B. E., Muirhead E. E. Identification of prostaglandin E2 as the principal vasodepressor lipid of rabbit renal medulla. Nature. 1967 Sep 16;215(5107):1298–1299. doi: 10.1038/2151298a0. [DOI] [PubMed] [Google Scholar]
  4. Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
  5. Frame M. H., Hedqvist P. Evidence for prostaglandin mediated prejunctional control of renal sympathetic transmitter release and vascular tone. Br J Pharmacol. 1975 Jun;54(2):189–196. doi: 10.1111/j.1476-5381.1975.tb06928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Itskovitz H. D., Terragno N. A., McGiff J. C. Effect of a renal prostaglandin on distribution of blood flow in the isolated canine kidney. Circ Res. 1974 Jun;34(6):770–776. doi: 10.1161/01.res.34.6.770. [DOI] [PubMed] [Google Scholar]
  7. Kirschenbaum M. A., White N., Stein J. H., Ferris T. F. Redistribution of renal cortical blood flow during inhibition of prostaglandin synthesis. Am J Physiol. 1974 Oct;227(4):801–805. doi: 10.1152/ajplegacy.1974.227.4.801. [DOI] [PubMed] [Google Scholar]
  8. Larsson C., Anggård E. Increased juxtamedullary blood flow on stimulation of intrarenal prostaglandin biosynthesis. Eur J Pharmacol. 1974 Mar;25(3):326–334. doi: 10.1016/0014-2999(74)90263-5. [DOI] [PubMed] [Google Scholar]
  9. Larsson C., Weber P., Anggård E. Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit. Eur J Pharmacol. 1974 Oct;28(2):391–394. doi: 10.1016/0014-2999(74)90296-9. [DOI] [PubMed] [Google Scholar]
  10. Lee J. B., Attallah A. A. Renal prostaglandins. Nephron. 1975;15(3-5):350–368. doi: 10.1159/000180520. [DOI] [PubMed] [Google Scholar]
  11. Pomeranz B. H., Birtch A. G., Barger A. C. Neural contrfl of intrarenal blood flow. Am J Physiol. 1968 Nov;215(5):1067–1081. doi: 10.1152/ajplegacy.1968.215.5.1067. [DOI] [PubMed] [Google Scholar]
  12. Pugsley D., Beilin L. J., Peto R. Renal prostaglandin synthesis in experimental renal-clip hypertension in the rat. Clin Sci Mol Med Suppl. 1975 Jun;2:303s–306s. doi: 10.1042/cs048303s. [DOI] [PubMed] [Google Scholar]
  13. Warren D. J., Ledingham J. G. Cardiac output in the conscious rabbit: an analysis of the thermodilution technique. J Appl Physiol. 1974 Feb;36(2):246–251. doi: 10.1152/jappl.1974.36.2.246. [DOI] [PubMed] [Google Scholar]
  14. Warren D. J., Ledingham J. G. Chronic left atrial catheterisation in the rabbit. Pflugers Arch. 1972;335(2):167–172. doi: 10.1007/BF00592043. [DOI] [PubMed] [Google Scholar]
  15. Warren D. J., Ledingham J. G. Measurement of intrarenal blood-flow distribution in the rabbit using radioactive microspheres. Clin Sci Mol Med. 1975 Jan;48(1):51–60. doi: 10.1042/cs0480051. [DOI] [PubMed] [Google Scholar]
  16. Zins G. R. Renal prostaglandins. Am J Med. 1975 Jan;58(1):14–24. doi: 10.1016/0002-9343(75)90528-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES