Skip to main content
Journal of the Experimental Analysis of Behavior logoLink to Journal of the Experimental Analysis of Behavior
. 1998 May;69(3):295–310. doi: 10.1901/jeab.1998.69-295

Food-deprivation level alters the effects of morphine on pigeons' key pecking.

A L Odum 1, S C Haworth 1, D W Schaal 1
PMCID: PMC1284659  PMID: 9599451

Abstract

Four pigeons pecked response keys under a multiple fixed-ratio 30 fixed-interval 5-min schedule of food presentation. Components alternated separated by 15-s timeouts; each was presented six times. Pigeons were maintained at 70%, 85%, and greater than 90% of their free-feeding weights across experimental conditions. When response rates were stable, the effects of morphine (0.56 to 10.0 mg/kg) and saline were investigated. Morphine reduced response rates in a dose-dependent manner under the fixed-ratio schedule and at high doses under the fixed-interval schedule. In some cases, low doses of morphine increased rates under the fixed-interval schedule. When pigeons were less food deprived, reductions in pecking rates occurred at lower doses under both schedules for 3 of 4 birds compared to when they were more food deprived. When pigeons were more food deprived, low doses of morphine increased rates of pecking in the initial portions of fixed intervals by a greater magnitude. Thus, food-deprivation levels altered both the rate-decreasing and rate-increasing effects of morphine. These effects may share a common mechanism with increased locomotor activity produced by drugs and with increased drug self-administration under conditions of more severe food deprivation.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babbini M., Davis W. M. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol. 1972 Oct;46(2):213–224. doi: 10.1111/j.1476-5381.1972.tb06866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byrd L. D. Contrasting effects of morphine on schedule-controlled behavior in the chimpanzee and baboon. J Pharmacol Exp Ther. 1975 Jun;193(3):861–869. [PubMed] [Google Scholar]
  3. Campbell B. A., Fibiger H. C. Potentiation of amphetamine-induced arousal by starvation. Nature. 1971 Oct 8;233(5319):424–425. doi: 10.1038/233424a0. [DOI] [PubMed] [Google Scholar]
  4. Carroll B. J., Sharp P. T. Monoamine mediation of the morphine-induced activation of mice. Br J Pharmacol. 1972 Sep;46(1):124–139. doi: 10.1111/j.1476-5381.1972.tb06855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll M. E. Performance maintained by orally delivered phencyclidine under second-order, tandem and fixed-interval schedules in food-satiated and food-deprived rhesus monkeys. J Pharmacol Exp Ther. 1985 Feb;232(2):351–359. [PubMed] [Google Scholar]
  6. Carroll M. E., Stotz D. C., Kliner D. J., Meisch R. A. Self-administration of orally-delivered methohexital in rhesus monkeys with phencyclidine or pentobarbital histories: effects of food deprivation and satiation. Pharmacol Biochem Behav. 1984 Jan;20(1):145–151. doi: 10.1016/0091-3057(84)90115-1. [DOI] [PubMed] [Google Scholar]
  7. Carroll M. E., Stotz D. C. Oral d-amphetamine and ketamine self-administration by rhesus monkeys: effects of food deprivation. J Pharmacol Exp Ther. 1983 Oct;227(1):28–34. [PubMed] [Google Scholar]
  8. Carroll M. E. The role of food deprivation in the maintenance and reinstatement of cocaine-seeking behavior in rats. Drug Alcohol Depend. 1985 Nov;16(2):95–109. doi: 10.1016/0376-8716(85)90109-7. [DOI] [PubMed] [Google Scholar]
  9. Cole S. O. Experimental effects of amphetamine: a review. Psychol Bull. 1967 Aug;68(2):81–90. doi: 10.1037/h0020185. [DOI] [PubMed] [Google Scholar]
  10. DEWS P. B. Studies on behavior. IV. Stimulant actions of methamphetamine. J Pharmacol Exp Ther. 1958 Jan;122(1):137–147. [PubMed] [Google Scholar]
  11. Deroche V., Marinelli M., Maccari S., Le Moal M., Simon H., Piazza P. V. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci. 1995 Nov;15(11):7181–7188. doi: 10.1523/JNEUROSCI.15-11-07181.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deroche V., Piazza P. V., Casolini P., Le Moal M., Simon H. Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Res. 1993 May 21;611(2):352–356. doi: 10.1016/0006-8993(93)90526-s. [DOI] [PubMed] [Google Scholar]
  13. Funada M., Suzuki T., Misawa M. The role of dopamine D1-receptors in morphine-induced hyperlocomotion in mice. Neurosci Lett. 1994 Mar 14;169(1-2):1–4. doi: 10.1016/0304-3940(94)90342-5. [DOI] [PubMed] [Google Scholar]
  14. Goldberg S. R., Morse W. H., Goldberg D. M. Some behavioral effects of morphine, naloxone and nalorphine in the squirrel monkey and the pigeon. J Pharmacol Exp Ther. 1976 Mar;196(3):625–636. [PubMed] [Google Scholar]
  15. Gollub L. R., Mann W. G., Jr The interaction of amphetamine and body weight on a food-reinforced operant. Psychopharmacologia. 1969;15(1):64–72. doi: 10.1007/BF00410802. [DOI] [PubMed] [Google Scholar]
  16. Heifetz S. A., McMillan D. E. Development of behavioral tolerance to morphine and methadone using the schedule-controlled behavior of the pigeon. Psychopharmacologia. 1971;19(1):40–52. doi: 10.1007/BF00403701. [DOI] [PubMed] [Google Scholar]
  17. Hughes C. E., Pitts R. C., Branch M. N. Cocaine and food deprivation: effects on food-reinforced fixed-ratio performance in pigeons. J Exp Anal Behav. 1996 Jan;65(1):145–158. doi: 10.1901/jeab.1996.65-145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz J. L., Goldberg S. R. Effects of ethylketazocine and morphine on schedule-controlled behavior in pigeons and squirrel monkeys. J Pharmacol Exp Ther. 1986 Nov;239(2):433–441. [PubMed] [Google Scholar]
  19. Kelly T. H., Thompson T. Food deprivation and methadone effects on fixed-interval performance by pigeons. Arch Int Pharmacodyn Ther. 1988 May-Jun;293:20–36. [PubMed] [Google Scholar]
  20. Kliner D. J., Meisch R. A. Oral pentobarbital intake in rhesus monkeys: effects of drug concentration under conditions of food deprivation and satiation. Pharmacol Biochem Behav. 1989 Jan;32(1):347–354. doi: 10.1016/0091-3057(89)90253-0. [DOI] [PubMed] [Google Scholar]
  21. Kuczenski R., Segal D. S., Aizenstein M. L. Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci. 1991 Sep;11(9):2703–2712. doi: 10.1523/JNEUROSCI.11-09-02703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Libri V., Ammassari-Teule M., Castellano C. Blocking of morphine-induced locomotor hyperactivity by amygdaloid lesions in C57BL/6 mice. Brain Res. 1989 Feb 6;479(1):1–5. doi: 10.1016/0006-8993(89)91328-0. [DOI] [PubMed] [Google Scholar]
  23. McKearney J. W. Effects of d-amphetamine, morphine and chlorpromazine on responding under fixed-interval schedules of food presentation or electric shock presentation. J Pharmacol Exp Ther. 1974 Jul;190(1):141–153. [PubMed] [Google Scholar]
  24. McKearney J. W. Fixed ratio schedules of food presentation and stimulus shock termination: effects of d-amphetamine, morphine, and clozapine. Psychopharmacology (Berl) 1980;70(1):35–39. doi: 10.1007/BF00432367. [DOI] [PubMed] [Google Scholar]
  25. McMillan D. E., Morse W. H. Some effects of morphine and morphine antagonists on schedule-controlled behavior. J Pharmacol Exp Ther. 1967 Jul;157(1):175–184. [PubMed] [Google Scholar]
  26. Meisch R. A., Kliner D. J. Etonitazene as a reinforcer for rats: increased etonitazene-reinforced behavior due to food deprivation. Psychopharmacology (Berl) 1979 May 8;63(1):97–98. doi: 10.1007/BF00426928. [DOI] [PubMed] [Google Scholar]
  27. Meisch R. A., Thompson T. Ethanol as a reinforcer: effects of fixed-ratio size and food deprivation. Psychopharmacologia. 1973 Jan 1;28(2):171–183. doi: 10.1007/BF00421402. [DOI] [PubMed] [Google Scholar]
  28. Meisch R. A., Thompson T. Ethanol intake as a function of concentration during food deprivation and satiation. Pharmacol Biochem Behav. 1974 Sep-Oct;2(5):589–596. doi: 10.1016/0091-3057(74)90025-2. [DOI] [PubMed] [Google Scholar]
  29. Papasava M., Singer G. Self-administration of low-dose cocaine by rats at reduced and recovered body weight. Psychopharmacology (Berl) 1985;85(4):419–425. doi: 10.1007/BF00429657. [DOI] [PubMed] [Google Scholar]
  30. Pulvirenti L., Swerdlow N. R., Koob G. F. Microinjection of a glutamate antagonist into the nucleus accumbens reduces psychostimulant locomotion in rats. Neurosci Lett. 1989 Aug 28;103(2):213–218. doi: 10.1016/0304-3940(89)90578-8. [DOI] [PubMed] [Google Scholar]
  31. Reith M. E. Effect of repeated administration of various doses of cocaine and WIN 35,065-2 on locomotor behavior of mice. Eur J Pharmacol. 1986 Oct 14;130(1-2):65–72. doi: 10.1016/0014-2999(86)90184-6. [DOI] [PubMed] [Google Scholar]
  32. Reith M. E., Meisler B. E., Lajtha A. Locomotor effects of cocaine, cocaine congeners, and local anesthetics in mice. Pharmacol Biochem Behav. 1985 Nov;23(5):831–836. doi: 10.1016/0091-3057(85)90078-4. [DOI] [PubMed] [Google Scholar]
  33. Samson H. H. Effect of amphetamine on sucrose-reinforced lever pressing: interaction with food deprivation. Drug Alcohol Depend. 1986 Jul;17(4):323–330. doi: 10.1016/0376-8716(86)90081-5. [DOI] [PubMed] [Google Scholar]
  34. Schaal D. W., Miller M. A., Odum A. L. Cocaine's effects on food-reinforced pecking in pigeons depend on food-deprivation level. J Exp Anal Behav. 1995 Jul;64(1):61–73. doi: 10.1901/jeab.1995.64-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schaal D.W., Branch M.N. Changes due to food deprivation in the effects of cocaine on the responding of pigeons. Behav Pharmacol. 1992 Feb;3(1):5–9. doi: 10.1097/00008877-199203010-00003. [DOI] [PubMed] [Google Scholar]
  36. Slifer B. E. Effects of morphine on fixed interval-induced escape from food reinforcement. Pharmacol Biochem Behav. 1982 May;16(5):683–687. doi: 10.1016/0091-3057(82)90217-9. [DOI] [PubMed] [Google Scholar]
  37. Smith J. B. Effects of d-amphetamine and pentobarbital in combination with single or repeated daily injections of morphine in the pigeon. J Pharmacol Exp Ther. 1978 Aug;206(2):353–360. [PubMed] [Google Scholar]
  38. Snell D., Harris R. A. Interactions between narcotic agonists, partial agonists andd antagonists evaluated by punished an unpunished behavior in the rat. Psychopharmacology (Berl) 1982;76(2):177–181. doi: 10.1007/BF00435274. [DOI] [PubMed] [Google Scholar]
  39. Stone W. S., Rudd R. J., Gold P. E. Glucose and physostigmine effects on morphine- and amphetamine-induced increases in locomotor activity in mice. Behav Neural Biol. 1990 Sep;54(2):146–155. doi: 10.1016/0163-1047(90)91338-c. [DOI] [PubMed] [Google Scholar]
  40. Takahashi R. N., Singer G. Self-administration of delta 9-tetrahydrocannabinol by rats. Pharmacol Biochem Behav. 1979 Dec;11(6):737–740. doi: 10.1016/0091-3057(79)90274-0. [DOI] [PubMed] [Google Scholar]
  41. Taşkin T. Potentiation of disruptive effects of dextromethorphan by naloxone on fixed-interval performance in rats. Psychopharmacology (Berl) 1986;90(3):408–411. doi: 10.1007/BF00179200. [DOI] [PubMed] [Google Scholar]
  42. Thompson T., Trombley J., Luke D., Lott D. Effects of morphine on behavior maintained by four simple food-reinforcement schedules. Psychopharmacologia. 1970;17(2):182–192. doi: 10.1007/BF00402708. [DOI] [PubMed] [Google Scholar]
  43. Wenger G. R. Effects of phencyclidine and ketamine in pigeons on behavior suppressed by brief electrical shocks. Pharmacol Biochem Behav. 1980 Jun;12(6):865–870. doi: 10.1016/0091-3057(80)90446-3. [DOI] [PubMed] [Google Scholar]
  44. de la Garza R., Bergman J., Hartel C. R. Food deprivation and cocaine self-administration. Pharmacol Biochem Behav. 1981 Jul;15(1):141–144. doi: 10.1016/0091-3057(81)90353-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the Experimental Analysis of Behavior are provided here courtesy of Society for the Experimental Analysis of Behavior

RESOURCES