Skip to main content
Journal of the Experimental Analysis of Behavior logoLink to Journal of the Experimental Analysis of Behavior
. 2000 Mar;73(2):211–224. doi: 10.1901/jeab.2000.73-211

Effects of compounding drug-related stimuli: escalation of heroin self-administration.

L V Panlilio 1, S J Weiss 1, C W Schindler 1
PMCID: PMC1284772  PMID: 10784010

Abstract

Previous experiments have demonstrated that presenting independently established discriminative stimuli in compound can substantially increase operant responding maintained by food reinforcement or shock avoidance. Recently, this phenomenon was also shown to occur with cocaine self-administration. The present study further assessed the generality of these stimulus-compounding effects by systematically replicating them with heroin self-administration. Rats' nose-poke responses produced intravenous heroin (0.025 mg/kg per infusion) on a variable-ratio schedule when either a tone or a light was present. In the absence of these stimuli, responding was not reinforced. Once discriminative control by the tone and light had been established, the stimuli were presented in compound under extinction (with heroin discontinued) or maintenance conditions (with heroin available during test-stimulus presentations). In extinction, the tone-light compound increased responding approximately threefold compared to tone or light alone. Under maintenance conditions, compounding increased heroin intake approximately twofold. These effects closely matched those obtained earlier with cocaine. This consistency across pharmacological classes and across drug and nondrug reinforcers further confirms that (a) self-administered drugs support conditioning and learning in a manner similar to that supported by other reinforcers; and (b) multiple drug-related cues interact in lawful and predictable ways to affect drug seeking and consumption.

Full Text

The Full Text of this article is available as a PDF (229.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr G. A., Sharpless N. S., Cooper S., Schiff S. R., Paredes W., Bridger W. H. Classical conditioning, decay and extinction of cocaine-induced hyperactivity and stereotypy. Life Sci. 1983 Oct 3;33(14):1341–1351. doi: 10.1016/0024-3205(83)90817-2. [DOI] [PubMed] [Google Scholar]
  2. Bickel W. K., Kelly T. H. The relationship of stimulus control to the treatment of substance abuse. NIDA Res Monogr. 1988;84:122–140. [PubMed] [Google Scholar]
  3. Bozarth M. A., Wise R. A. Toxicity associated with long-term intravenous heroin and cocaine self-administration in the rat. JAMA. 1985 Jul 5;254(1):81–83. [PubMed] [Google Scholar]
  4. Bridger W. H., Schiff S. R., Cooper S. S., Paredes W., Barr G. A. Classical conditioning of cocaine's stimulatory effects. Psychopharmacol Bull. 1982 Oct;18(4):210–214. [PubMed] [Google Scholar]
  5. Chang J. Y., Janak P. H., Woodward D. J. Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci. 1998 Apr 15;18(8):3098–3115. doi: 10.1523/JNEUROSCI.18-08-03098.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Comer S. D., Collins E. D., Wilson S. T., Donovan M. R., Foltin R. W., Fischman M. W. Effects of an alternative reinforcer on intravenous heroin self-administration by humans. Eur J Pharmacol. 1998 Mar 12;345(1):13–26. doi: 10.1016/s0014-2999(97)01572-0. [DOI] [PubMed] [Google Scholar]
  7. Dai S., Corrigall W. A., Coen K. M., Kalant H. Heroin self-administration by rats: influence of dose and physical dependence. Pharmacol Biochem Behav. 1989 Apr;32(4):1009–1015. doi: 10.1016/0091-3057(89)90074-9. [DOI] [PubMed] [Google Scholar]
  8. Emurian H. H., Weiss S. J. Compounding discriminative stimuli controlling free-operant avoidance. J Exp Anal Behav. 1972 Mar;17(2):249–256. doi: 10.1901/jeab.1972.17-249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ettenberg A., Geist T. D. Qualitative and quantitative differences in the operant runway behavior of rats working for cocaine and heroin reinforcement. Pharmacol Biochem Behav. 1993 Jan;44(1):191–198. doi: 10.1016/0091-3057(93)90298-8. [DOI] [PubMed] [Google Scholar]
  10. Geist T. D., Ettenberg A. Concurrent positive and negative goalbox events produce runway behaviors comparable to those of cocaine-reinforced rats. Pharmacol Biochem Behav. 1997 May-Jun;57(1-2):145–150. doi: 10.1016/s0091-3057(96)00300-0. [DOI] [PubMed] [Google Scholar]
  11. Koob G. F. Neural mechanisms of drug reinforcement. Ann N Y Acad Sci. 1992 Jun 28;654:171–191. doi: 10.1111/j.1749-6632.1992.tb25966.x. [DOI] [PubMed] [Google Scholar]
  12. Koob G. F., Vaccarino F. J., Amalric M., Bloom F. E. Neurochemical substrates for opiate reinforcement. NIDA Res Monogr. 1986;71:146–164. [PubMed] [Google Scholar]
  13. Markou A., Weiss F., Gold L. H., Caine S. B., Schulteis G., Koob G. F. Animal models of drug craving. Psychopharmacology (Berl) 1993;112(2-3):163–182. doi: 10.1007/BF02244907. [DOI] [PubMed] [Google Scholar]
  14. Panlilio L. V., Schindler C. W. Conditioned locomotor-activating and reinforcing effects of discrete stimuli paired with intraperitoneal cocaine. Behav Pharmacol. 1997 Dec;8(8):691–698. doi: 10.1097/00008877-199712000-00003. [DOI] [PubMed] [Google Scholar]
  15. Panlilio L. V., Weiss S. J., Schindler C. W. Cocaine self-administration increased by compounding discriminative stimuli. Psychopharmacology (Berl) 1996 Jun;125(3):202–208. doi: 10.1007/BF02247329. [DOI] [PubMed] [Google Scholar]
  16. Panlilio L. V., Weiss S. J., Schindler C. W. Motivational effects of compounding discriminative stimuli associated with food and cocaine. Psychopharmacology (Berl) 1998 Mar;136(1):70–74. doi: 10.1007/s002130050540. [DOI] [PubMed] [Google Scholar]
  17. Pert A. Neurobiological mechanisms underlying the acquisition and expression of incentive motivation by cocaine-associated stimuli: relationship to craving. NIDA Res Monogr. 1994;145:163–190. [PubMed] [Google Scholar]
  18. Robinson T. E., Berridge K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993 Sep-Dec;18(3):247–291. doi: 10.1016/0165-0173(93)90013-p. [DOI] [PubMed] [Google Scholar]
  19. Schindler C. W., Katz J. L., Goldberg S. R. The use of second-order schedules to study the influence of environmental stimuli on drug-seeking behavior. NIDA Res Monogr. 1988;84:180–195. [PubMed] [Google Scholar]
  20. Schindler C. W., Thorndike E. B., Ma J. D., Goldberg S. R. Conditioned suppression with cocaine as the unconditioned stimulus. Pharmacol Biochem Behav. 2000 Jan 1;65(1):83–89. doi: 10.1016/s0091-3057(99)00176-8. [DOI] [PubMed] [Google Scholar]
  21. Stewart J., de Wit H., Eikelboom R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev. 1984 Apr;91(2):251–268. [PubMed] [Google Scholar]
  22. WEISS S. J. SUMMATION OF RESPONSE STRENGTHS INSTRUMENTALLY CONDITIONED TO STIMULI IN DIFFERENT SENSORY MODALITIES. J Exp Psychol. 1964 Aug;68:151–155. doi: 10.1037/h0049180. [DOI] [PubMed] [Google Scholar]
  23. Walter S., Kuschinsky K. Conditioning of morphine-induced locomotor activity and stereotyped behaviour in rats. J Neural Transm Gen Sect. 1989;78(3):231–247. doi: 10.1007/BF01249232. [DOI] [PubMed] [Google Scholar]
  24. Weiss S. J. Discriminated response and incentive processes in operant conditioning: a two-factor model of stimulus control. J Exp Anal Behav. 1978 Nov;30(3):361–381. doi: 10.1901/jeab.1978.30-361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weiss S. J. Discrimination training and stimulus compounding: consideration of non-reinforcement and response differentiation consequences of S. J Exp Anal Behav. 1971 May;15(3):387–402. doi: 10.1901/jeab.1971.15-387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weiss S. J., Schindler C. W., Eason R. The integration of habits maintained by food and water reinforcement through stimulus compounding. J Exp Anal Behav. 1988 Sep;50(2):237–247. doi: 10.1901/jeab.1988.50-237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss S. J., Thomas D. A., Weissman R. D. Combining operant-baseline-derived conditioned excitors and inhibitors from the same and different incentive classes: an investigation of appetitive-aversive interactions. Q J Exp Psychol B. 1996 Nov;49(4):357–381. doi: 10.1080/713932635. [DOI] [PubMed] [Google Scholar]
  28. Wise R. A., Leone P., Rivest R., Leeb K. Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse. 1995 Oct;21(2):140–148. doi: 10.1002/syn.890210207. [DOI] [PubMed] [Google Scholar]
  29. Wise R. A. Neurobiology of addiction. Curr Opin Neurobiol. 1996 Apr;6(2):243–251. doi: 10.1016/s0959-4388(96)80079-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the Experimental Analysis of Behavior are provided here courtesy of Society for the Experimental Analysis of Behavior

RESOURCES