Skip to main content
Archives of Emergency Medicine logoLink to Archives of Emergency Medicine
. 1984 Jun;1(2):79–88. doi: 10.1136/emj.1.2.79

Experimental studies into mechanisms of cardiac arrest.

D C Russell
PMCID: PMC1285203  PMID: 6399208

Abstract

Experimental studies have revealed that a wide variety of different pathophysiological mechanisms may induce ventricular fibrillation (VF) and cardiac arrest during acute myocardial ischaemia or infarction. Distinct phases of enhanced vulnerability (the amount of current required to stimulate ectopic activity in the heart following application of an extra stimulus) to VF follow coronary occlusion and correspond to 'pre-hospital', 'in-hospital' and 'out-of-hospital' periods of arrhythmogenesis. Electrophysiological evidence suggests very early (phase 1a) VF results from multiple re-entrant excitation within the ischaemic zone. Slowed and fragmented conduction and inhomogeneities in refractoriness rapidly develop which mapping studies show to occur in association with development of spatial inhomogeneities in residual blood flow distribution and metabolism. Onset of VF may be triggered by adrenergic mechanisms or influenced by peripheral metabolic responses. Automatic mechanisms (spontaneous pacemaker activity) may induce later VF or VF on reperfusion or trigger re-entry. Findings indicate no single therapeutic approach to be likely to protect against all forms of cardiac arrest.

Full text

PDF
79

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bigger J. T., Jr, Dresdale F. J., Heissenbuttel R. H., Weld F. M., Wit A. L. Ventricular arrhythmias in ischemic heart disease: mechanism, prevalence, significance, and management. Prog Cardiovasc Dis. 1977 Jan-Feb;19(4):255–300. doi: 10.1016/0033-0620(77)90005-6. [DOI] [PubMed] [Google Scholar]
  2. Ebert P. A., Allgood R. J., Sabiston D. C., Jr The anti-arrhythmic effects of cardiac denervation. Ann Surg. 1968 Oct;168(4):728–735. doi: 10.1097/00000658-196810000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. El Sherif N., Scherlag B. J., Lazzara R. Electroide cather recording during malignant ventricular arrythmia following experimental acute myocardial ischemia. Evidence for re-entry due to conduction delay and block in ischemic myocardium. Circulation. 1975 Jun;51(6):1003–1014. doi: 10.1161/01.cir.51.6.1003. [DOI] [PubMed] [Google Scholar]
  4. Janse M. J., van Capelle F. J., Morsink H., Kléber A. G., Wilms-Schopman F., Cardinal R., d'Alnoncourt C. N., Durrer D. Flow of "injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res. 1980 Aug;47(2):151–165. doi: 10.1161/01.res.47.2.151. [DOI] [PubMed] [Google Scholar]
  5. Kaplinsky E., Ogawa S., Michelson E. L., Dreifus L. S. Instantaneous and delayed ventricular arrhythmias after reperfusion of acutely ischemic myocardium: evidence for multiple mechanisms. Circulation. 1981 Feb;63(2):333–340. doi: 10.1161/01.cir.63.2.333. [DOI] [PubMed] [Google Scholar]
  6. Kuller L. Sudden and unexpected non-traumatic deaths in adults: a review of epidemiological and clinical studies. J Chronic Dis. 1966 Nov-Dec;19(11):1165–1192. doi: 10.1016/0021-9681(66)90017-8. [DOI] [PubMed] [Google Scholar]
  7. Lazzara R., El-Sherif N., Hope R. R., Scherlag B. J. Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res. 1978 Jun;42(6):740–749. doi: 10.1161/01.res.42.6.740. [DOI] [PubMed] [Google Scholar]
  8. Russell D. C., Oliver M. F. Ventricular refractoriness during acute myocardial ischaemia and its relationship to ventricular fibrillation. Cardiovasc Res. 1978 Apr;12(4):221–227. doi: 10.1093/cvr/12.4.221. [DOI] [PubMed] [Google Scholar]
  9. Russell D. C., Riemersma R. A., Lawrie J. S., Oliver M. F. Patterns of flow and conduction during early ventricular arrhythmias following coronary arterial occlusion in the dog. Cardiovasc Res. 1982 Nov;16(11):613–623. doi: 10.1093/cvr/16.11.613. [DOI] [PubMed] [Google Scholar]
  10. Russell D. C., Smith J. H., Oliver M. F. Transmembrane potential changes and ventricular fibrillation during repetitive myocardial ischaemia in the dog. Br Heart J. 1979 Jul;42(1):88–96. doi: 10.1136/hrt.42.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Surawicz B. Ventricular fibrillation. Am J Cardiol. 1971 Sep;28(3):268–287. doi: 10.1016/0002-9149(71)90115-9. [DOI] [PubMed] [Google Scholar]
  12. Verrier R. L., Thompson P. L., Lown B. Ventricular vulnerability during sympathetic stimulation: role of heart rate and blood pressure. Cardiovasc Res. 1974 Sep;8(5):602–610. doi: 10.1093/cvr/8.5.602. [DOI] [PubMed] [Google Scholar]
  13. Wit A. L., Rosen M. R., Hoffman B. F. Electrophysiology and pharmacology of cardiac arrhythmias. II. Relationship of normal and abnormal electrical activity of cardiac fibers to the genesis of arrhythmias B. Re-entry. Section I. Am Heart J. 1974 Nov;88(5):664–670. doi: 10.1016/0002-8703(74)90253-1. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Emergency Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES