Abstract
PURPOSE: To develop a technique to estimate the corneal endothelial pump rate in human subjects. METHODS: Corneal hydration control is thought to be maintained by a pump-leak mechanism whereby the leak of solutes and fluid across the endothelial barrier into the stroma is, in the steady state, exactly balanced by the pumping of solutes and passive fluid transfer across the endothelium to the aqueous humor. Overall corneal hydration control can be measured from the rate at which the swollen cornea thins (deswells), and a measure of the leak can be obtained simultaneously from the endothelial permeability to fluorescein. From the pump-leak hypothesis, the deswelling rate is directly proportional to the pump rate and inversely proportional to the leak rate. The relative endothelial pump rate can be estimated as the product of the normalized deswelling rate and the normalized endothelial permeability. This procedure was used to obtain the relative endothelial pump rate in 41 patients with diabetes mellitus, 12 patients with long-term corneal transplants, 20 long-term wearers of contact lenses, and 19 normal volunteer subjects after the short-term administration of topical dorzolamide. RESULTS: The relative endothelial pump rate did not differ significantly from that of control subjects in diabetics, in contact lens wearers, and after dorzolamide administration, but was markedly decreased in the patients with corneal transplants, despite a reduction in permeability (reduced leak). CONCLUSIONS: This method allows the estimation of both the barrier and pump arms of corneal endothelial function and should be useful in the investigation of causes and mechanisms of functional endothelial insufficiency.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bourne W. M. Functional measurements on the enlarged endothelial cells of corneal transplants. Trans Am Ophthalmol Soc. 1995;93:65–82. [PMC free article] [PubMed] [Google Scholar]
- Carlson K. H., Bourne W. M., McLaren J. W., Brubaker R. F. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res. 1988 Jul;47(1):27–41. doi: 10.1016/0014-4835(88)90021-8. [DOI] [PubMed] [Google Scholar]
- DOHLMAN C. H., HEDBYS B. O., MISHIMA S. The swelling pressure of the corneal stroma. Invest Ophthalmol. 1962 Apr;1:158–162. [PubMed] [Google Scholar]
- Egan C. A., Hodge D. O., McLaren J. W., Bourne W. M. Effect of dorzolamide on corneal endothelial function in normal human eyes. Invest Ophthalmol Vis Sci. 1998 Jan;39(1):23–29. [PubMed] [Google Scholar]
- Geroski D. H., Edelhauser H. F. Quantitation of Na/K ATPase pump sites in the rabbit corneal endothelium. Invest Ophthalmol Vis Sci. 1984 Sep;25(9):1056–1060. [PubMed] [Google Scholar]
- Giasson C., Forthomme D. Comparison of central corneal thickness measurements between optical and ultrasound pachometers. Optom Vis Sci. 1992 Mar;69(3):236–241. doi: 10.1097/00006324-199203000-00010. [DOI] [PubMed] [Google Scholar]
- Herndon L. W., Choudhri S. A., Cox T., Damji K. F., Shields M. B., Allingham R. R. Central corneal thickness in normal, glaucomatous, and ocular hypertensive eyes. Arch Ophthalmol. 1997 Sep;115(9):1137–1141. doi: 10.1001/archopht.1997.01100160307007. [DOI] [PubMed] [Google Scholar]
- Holden B. A., Sweeney D. F., La Hood D., Kenyon E. Corneal deswelling following overnight wear of rigid and hydrogel contact lenses. Curr Eye Res. 1988 Jan;7(1):49–53. doi: 10.3109/02713688809047019. [DOI] [PubMed] [Google Scholar]
- Jones R. F., Maurice D. M. New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res. 1966 Jul;5(3):208–220. doi: 10.1016/s0014-4835(66)80009-x. [DOI] [PubMed] [Google Scholar]
- Maurice D. M. The location of the fluid pump in the cornea. J Physiol. 1972 Feb;221(1):43–54. doi: 10.1113/jphysiol.1972.sp009737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaren J. W., Brubaker R. F. A two-dimensional scanning ocular fluorophotometer. Invest Ophthalmol Vis Sci. 1985 Feb;26(2):144–152. [PubMed] [Google Scholar]
- McNamara N. A., Brand R. J., Polse K. A., Bourne W. M. Corneal function during normal and high serum glucose levels in diabetes. Invest Ophthalmol Vis Sci. 1998 Jan;39(1):3–17. [PubMed] [Google Scholar]
- O'Neal M. R., Polse K. A. In vivo assessment of mechanisms controlling corneal hydration. Invest Ophthalmol Vis Sci. 1985 Jun;26(6):849–856. [PubMed] [Google Scholar]
- O'Neal M. R., Polse K. A., Sarver M. D. Corneal response to rigid and hydrogel lenses during eye closure. Invest Ophthalmol Vis Sci. 1984 Jul;25(7):837–842. [PubMed] [Google Scholar]
- Ota Y., Mishima S., Maurice D. M. Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol. 1974 Dec;13(12):945–949. [PubMed] [Google Scholar]
- Polse K. A., Brand R., Mandell R., Vastine D., Demartini D., Flom R. Age differences in corneal hydration control. Invest Ophthalmol Vis Sci. 1989 Mar;30(3):392–399. [PubMed] [Google Scholar]
- Salz J. J., Azen S. P., Berstein J., Caroline P., Villasenor R. A., Schanzlin D. J. Evaluation and comparison of sources of variability in the measurement of corneal thickness with ultrasonic and optical pachymeters. Ophthalmic Surg. 1983 Sep;14(9):750–754. [PubMed] [Google Scholar]
- Vannas A., Holden B. A., Sweeney D. F., Efron N., Polse K. A. Deswelling of the graft cornea following hypoxic oedema. Acta Ophthalmol (Copenh) 1984 Dec;62(6):879–884. doi: 10.1111/j.1755-3768.1984.tb08438.x. [DOI] [PubMed] [Google Scholar]
- Weston B. C., Bourne W. M., Polse K. A., Hodge D. O. Corneal hydration control in diabetes mellitus. Invest Ophthalmol Vis Sci. 1995 Mar;36(3):586–595. [PubMed] [Google Scholar]
