Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 1989;87:802–853.

Ultraviolet radiation and the eye: an epidemiologic study.

H R Taylor 1
PMCID: PMC1298564  PMID: 2562534

Abstract

Circumstantial evidence from biochemical, animal, and epidemiologic studies suggests an association between exposure to UV-B radiation (290 nm to 320 nm) and cataract. Such an association had not been proven because it had not been possible to quantify ocular UV-B exposure of individuals or to reliably grade the type and severity of cataract in field studies. We undertook an epidemiologic survey of cataract among 838 watermen who work on the Chesapeake Bay. Their individual ocular UV-B exposure was quantified for each year of life over the age of 16, on the basis of a detailed occupational history combined with laboratory and field measurements of ocular UV-B exposure. Cataracts were graded by both type and severity through clinical and photographic means. SMD changes were ascertained by fundal photography. A general medical history was taken to discover potentially confounding factors. This study showed that people with cortical lens opacities had a 21% higher UV-B exposure at each year of life than people without these opacities. A doubling in lifetime UV-B exposure led to a 60% increase in the risk of cortical cataract, and those with a high annual UV-B exposure increased their risk of cortical cataract over threefold. Corneal changes, namely pterygium and CDK, were also strongly associated with high UV-B exposure. No association was found between nuclear lens opacities or macular degeneration and UV-B exposure. This study also indicated several simple, practical measures, such as wearing spectacles or a hat, that effectively protect the eye from UV-B exposure. Thus it is easily within the power of individuals to protect their eyes from excessive UV-B exposure and reduce their risk of cortical cataract. A program of public education in this area could be a cost-effective means of reducing this important disease.

Full text

PDF
802

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACHEM A. Ophthalmic ultraviolet action spectra. Am J Ophthalmol. 1956 Jun;41(6):969–975. doi: 10.1016/0002-9394(56)91044-3. [DOI] [PubMed] [Google Scholar]
  2. Blumenkranz M. S., Russell S. R., Robey M. G., Kott-Blumenkranz R., Penneys N. Risk factors in age-related maculopathy complicated by choroidal neovascularization. Ophthalmology. 1986 May;93(5):552–558. doi: 10.1016/s0161-6420(86)33702-3. [DOI] [PubMed] [Google Scholar]
  3. Bressler N. M., Bressler S. B., West S. K., Fine S. L., Taylor H. R. The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch Ophthalmol. 1989 Jun;107(6):847–852. doi: 10.1001/archopht.1989.01070010869032. [DOI] [PubMed] [Google Scholar]
  4. Brilliant L. B., Grasset N. C., Pokhrel R. P., Kolstad A., Lepkowski J. M., Brilliant G. E., Hawks W. N., Pararajasegaram R. Associations among cataract prevalence, sunlight hours, and altitude in the Himalayas. Am J Epidemiol. 1983 Aug;118(2):250–264. doi: 10.1093/oxfordjournals.aje.a113632. [DOI] [PubMed] [Google Scholar]
  5. Bron A. J., Brown N. A. Perinuclear lens retrodots: a role for ascorbate in cataractogenesis. Br J Ophthalmol. 1987 Feb;71(2):86–95. doi: 10.1136/bjo.71.2.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calkins J. L., Hochheimer B. F. Retinal light exposure from operation microscopes. Arch Ophthalmol. 1979 Dec;97(12):2363–2367. doi: 10.1001/archopht.1979.01020020579017. [DOI] [PubMed] [Google Scholar]
  7. Cameron L. L., Vitasa B. C., Lewis P. G., Taylor H. R., Emmett E. A. Visual assessment of facial elastosis using photographs as a measure of cumulative ultraviolet exposure. Photodermatol. 1988 Dec;5(6):277–282. [PubMed] [Google Scholar]
  8. Chylack L. T., Jr, Ransil B. J., White O. Classification of human senile cataractous change by the American Cooperative Cataract Research Group (CCRG) method: III. The association of nuclear color (sclerosis) with extent of cataract formation, age, and visual acuity. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):174–180. [PubMed] [Google Scholar]
  9. Cooper G. F., Robson J. G. The yellow colour of the lens of man and other primates. J Physiol. 1969 Aug;203(2):411–417. doi: 10.1113/jphysiol.1969.sp008871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DISCHE Z., ZIL H. Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation. Am J Ophthalmol. 1951 May;34(5 2):104–113. doi: 10.1016/0002-9394(51)90013-x. [DOI] [PubMed] [Google Scholar]
  11. Dilley K. J. Letter: Ultraviolet light and human cataract. Nature. 1975 Sep 4;257(5521):71–72. doi: 10.1038/257071b0. [DOI] [PubMed] [Google Scholar]
  12. Dillon J. Photolytic changes in lens proteins. Curr Eye Res. 1984 Jan;3(1):145–150. doi: 10.3109/02713688408997196. [DOI] [PubMed] [Google Scholar]
  13. Farnsworth P. N., Spector A., Lozier J. R., Shyne S. E., Garner M. H., Garner W. H. The localization of 43K polypeptide in normal and cataractous lenses by immunofluorescence. Exp Eye Res. 1981 Mar;32(3):257–264. doi: 10.1016/0014-4835(81)90031-2. [DOI] [PubMed] [Google Scholar]
  14. Fishman G. A. Ocular phototoxicity: guidelines for selecting sunglasses. Surv Ophthalmol. 1986 Sep-Oct;31(2):119–124. doi: 10.1016/0039-6257(86)90079-2. [DOI] [PubMed] [Google Scholar]
  15. Garner M. H., Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1274–1277. doi: 10.1073/pnas.77.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garner W. H., Garner M. H., Spector A. Gamma-crystallin, a major cytoplasmic polypeptide disulfide linked to membrane proteins in human cataract. Biochem Biophys Res Commun. 1981 Jan 30;98(2):439–447. doi: 10.1016/0006-291x(81)90859-7. [DOI] [PubMed] [Google Scholar]
  17. Garner W. H., Garner M. H., Spector A. H2O2-induced uncoupling of bovine lens Na+,K+-ATPase. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2044–2048. doi: 10.1073/pnas.80.7.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ham W. T., Jr, Mueller H. A., Ruffolo J. J., Jr, Guerry D., 3rd, Guerry R. K. Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol. 1982 Mar;93(3):299–306. doi: 10.1016/0002-9394(82)90529-3. [DOI] [PubMed] [Google Scholar]
  19. Ham W. T., Jr, Ruffolo J. J., Jr, Mueller H. A., Clarke A. M., Moon M. E. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci. 1978 Oct;17(10):1029–1035. [PubMed] [Google Scholar]
  20. Harding J. J. Cataract: sanitation or sunglasses? Lancet. 1982 Jan 2;1(8262):39–39. doi: 10.1016/s0140-6736(82)92573-9. [DOI] [PubMed] [Google Scholar]
  21. Harding J. J., Dilley K. J. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976 Jan;22(1):1–73. doi: 10.1016/0014-4835(76)90033-6. [DOI] [PubMed] [Google Scholar]
  22. Harding J. J., Rixon K. C. Is diarrhoea a major cause of cataract in some tropical countries? Metab Pediatr Ophthalmol. 1981;5(3-4):161–166. [PubMed] [Google Scholar]
  23. Hiller R., Giacometti L., Yuen K. Sunlight and cataract: an epidemiologic investigation. Am J Epidemiol. 1977 May;105(5):450–459. doi: 10.1093/oxfordjournals.aje.a112404. [DOI] [PubMed] [Google Scholar]
  24. Hiller R., Sperduto R. D., Ederer F. Epidemiologic associations with cataract in the 1971-1972 National Health and Nutrition Examination Survey. Am J Epidemiol. 1983 Aug;118(2):239–249. doi: 10.1093/oxfordjournals.aje.a113631. [DOI] [PubMed] [Google Scholar]
  25. Hochheimer B. F., D'Anna S. A., Calkins J. L. Retinal damage from light. Am J Ophthalmol. 1979 Dec;88(6):1039–1044. doi: 10.1016/0002-9394(79)90413-6. [DOI] [PubMed] [Google Scholar]
  26. Hollows F., Moran D. Cataract--the ultraviolet risk factor. Lancet. 1981 Dec 5;2(8258):1249–1250. doi: 10.1016/s0140-6736(81)91490-2. [DOI] [PubMed] [Google Scholar]
  27. Iwata S., Kinoshita J. H. Mechanism of development of hereditary cataract in mice. Invest Ophthalmol. 1971 Jul;10(7):504–512. [PubMed] [Google Scholar]
  28. Jones R. R. Ozone depletion and cancer risk. Lancet. 1987 Aug 22;2(8556):443–446. doi: 10.1016/s0140-6736(87)90972-x. [DOI] [PubMed] [Google Scholar]
  29. Kador P. F., Kinoshita J. H. Diabetic and galactosaemic cataracts. Ciba Found Symp. 1984;106:110–131. doi: 10.1002/9780470720875.ch7. [DOI] [PubMed] [Google Scholar]
  30. Kinoshita J. H. Mechanisms initiating cataract formation. Proctor Lecture. Invest Ophthalmol. 1974 Oct;13(10):713–724. [PubMed] [Google Scholar]
  31. Kuwabara T., Gorn R. A. Retinal damage by visible light. An electron microscopic study. Arch Ophthalmol. 1968 Jan;79(1):69–78. doi: 10.1001/archopht.1968.03850040071019. [DOI] [PubMed] [Google Scholar]
  32. Lawwill T., Crockett S., Currier G. Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Doc Ophthalmol. 1977 Dec 30;44(2):379–402. doi: 10.1007/BF00230089. [DOI] [PubMed] [Google Scholar]
  33. Mainster M. A. Light and macular degeneration: a biophysical and clinical perspective. Eye (Lond) 1987;1(Pt 2):304–310. doi: 10.1038/eye.1987.49. [DOI] [PubMed] [Google Scholar]
  34. Mao W. S., Hu T. S. An epidemiologic survey of senile cataract in China. Chin Med J (Engl) 1982 Nov;95(11):813–818. [PubMed] [Google Scholar]
  35. Noell W. K., Walker V. S., Kang B. S., Berman S. Retinal damage by light in rats. Invest Ophthalmol. 1966 Oct;5(5):450–473. [PubMed] [Google Scholar]
  36. Pathak M. A., Krämer D. M., Güngerich U. Formation of thymine dimers in mammalian skin by ultraviolet radiation in vivo. Photochem Photobiol. 1972 Feb;15(2):177–185. doi: 10.1111/j.1751-1097.1972.tb06237.x. [DOI] [PubMed] [Google Scholar]
  37. Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
  38. Pirie A. Formation of N'-formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J. 1971 Nov;125(1):203–208. doi: 10.1042/bj1250203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pitts D. G. The human ultraviolet action spectrum. Am J Optom Physiol Opt. 1974 Dec;51(12):946–960. doi: 10.1097/00006324-197412000-00003. [DOI] [PubMed] [Google Scholar]
  40. Pizzarello L. D. The dimensions of the problem of eye disease among the elderly. Ophthalmology. 1987 Sep;94(9):1191–1195. doi: 10.1016/s0161-6420(87)33308-1. [DOI] [PubMed] [Google Scholar]
  41. Reddy V. N., Giblin F. J. Metabolism and function of glutathione in the lens. Ciba Found Symp. 1984;106:65–87. doi: 10.1002/9780470720875.ch5. [DOI] [PubMed] [Google Scholar]
  42. Robertson D. F. Solar ultraviolet radiation in relation to sunburn and skin cancer. Med J Aust. 1968 Dec 21;2(25):1123–1132. doi: 10.5694/j.1326-5377.1968.tb83469.x. [DOI] [PubMed] [Google Scholar]
  43. Rosenthal F. S., Bakalian A. E., Taylor H. R. The effect of prescription eyewear on ocular exposure to ultraviolet radiation. Am J Public Health. 1986 Oct;76(10):1216–1220. doi: 10.2105/ajph.76.10.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rosenthal F. S., Phoon C., Bakalian A. E., Taylor H. R. The ocular dose of ultraviolet radiation to outdoor workers. Invest Ophthalmol Vis Sci. 1988 Apr;29(4):649–656. [PubMed] [Google Scholar]
  45. Rosenthal F. S., Safran M., Taylor H. R. The ocular dose of ultraviolet radiation from sunlight exposure. Photochem Photobiol. 1985 Aug;42(2):163–171. doi: 10.1111/j.1751-1097.1985.tb01555.x. [DOI] [PubMed] [Google Scholar]
  46. Sliney D. H. Eye protective techniques for bright light. Ophthalmology. 1983 Aug;90(8):937–944. doi: 10.1016/s0161-6420(83)80021-9. [DOI] [PubMed] [Google Scholar]
  47. Sliney D. H. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature. Invest Ophthalmol Vis Sci. 1986 May;27(5):781–790. [PubMed] [Google Scholar]
  48. Smith A. H., Waxweiler R. J., Tyroler H. A. Epidemiologic investigation of occupational carcinogenesis using a serially additive expected dose model. Am J Epidemiol. 1980 Dec;112(6):787–797. doi: 10.1093/oxfordjournals.aje.a113051. [DOI] [PubMed] [Google Scholar]
  49. Sommer A. Diabetes and senile cataract. Am J Ophthalmol. 1981 Jul;92(1):134–135. doi: 10.1016/s0002-9394(14)75929-x. [DOI] [PubMed] [Google Scholar]
  50. Spector A., Garner W. H. Hydrogen peroxide and human cataract. Exp Eye Res. 1981 Dec;33(6):673–681. doi: 10.1016/s0014-4835(81)80107-8. [DOI] [PubMed] [Google Scholar]
  51. Spector A., Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3244–3248. doi: 10.1073/pnas.75.7.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Spector A. The search for a solution to senile cataracts. Proctor lecture. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):130–146. [PubMed] [Google Scholar]
  53. Sperduto R. D., Hiller R., Seigel D. Lens opacities and senile maculopathy. Arch Ophthalmol. 1981 Jun;99(6):1004–1008. doi: 10.1001/archopht.1981.03930011004003. [DOI] [PubMed] [Google Scholar]
  54. Taylor H. R. The environment and the lens. Br J Ophthalmol. 1980 May;64(5):303–310. doi: 10.1136/bjo.64.5.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Taylor H. R., West S. K. The clinical grading of lens opacities. Aust N Z J Ophthalmol. 1989 Feb;17(1):81–86. [PubMed] [Google Scholar]
  56. Tucker M. A., Shields J. A., Hartge P., Augsburger J., Hoover R. N., Fraumeni J. F., Jr Sunlight exposure as risk factor for intraocular malignant melanoma. N Engl J Med. 1985 Sep 26;313(13):789–792. doi: 10.1056/NEJM198509263131305. [DOI] [PubMed] [Google Scholar]
  57. Van Heyningen R. Fluorescent glucoside in the human lens. Nature. 1971 Apr 9;230(5293):393–394. doi: 10.1038/230393a0. [DOI] [PubMed] [Google Scholar]
  58. Van Heyningen R. The human lens. I. A comparison of cataracts extracted in Oxford (England) and Shikarpur (W. Pakistan). Exp Eye Res. 1972 Mar;13(2):136–147. doi: 10.1016/0014-4835(72)90026-7. [DOI] [PubMed] [Google Scholar]
  59. Varma S. D., Kumar S., Richards R. D. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3504–3506. doi: 10.1073/pnas.76.7.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Walls G. L., Judd H. D. THE INTRA-OCULAR COLOUR-FILTERS OF VERTEBRATES. Br J Ophthalmol. 1933 Nov;17(11):641–675. doi: 10.1136/bjo.17.11.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weiter J. J., Delori F. C., Wing G. L., Fitch K. A. Relationship of senile macular degeneration to ocular pigmentation. Am J Ophthalmol. 1985 Feb 15;99(2):185–187. doi: 10.1016/0002-9394(85)90230-2. [DOI] [PubMed] [Google Scholar]
  62. West S. K., Muñoz B. E., Newland H. S., Emmett E. A., Taylor H. R. Lack of evidence for aspirin use and prevention of cataracts. Arch Ophthalmol. 1987 Sep;105(9):1229–1231. doi: 10.1001/archopht.1987.01060090087034. [DOI] [PubMed] [Google Scholar]
  63. West S. K., Rosenthal F., Newland H. S., Taylor H. R. Use of photographic techniques to grade nuclear cataracts. Invest Ophthalmol Vis Sci. 1988 Jan;29(1):73–77. [PubMed] [Google Scholar]
  64. Wistow G. J., Mulders J. W., de Jong W. W. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature. 1987 Apr 9;326(6113):622–624. doi: 10.1038/326622a0. [DOI] [PubMed] [Google Scholar]
  65. Wistow G., Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science. 1987 Jun 19;236(4808):1554–1556. doi: 10.1126/science.3589669. [DOI] [PubMed] [Google Scholar]
  66. Zigman S., Datiles M., Torczynski E. Sunlight and human cataracts. Invest Ophthalmol Vis Sci. 1979 May;18(5):462–467. [PubMed] [Google Scholar]
  67. Zigman S., Griess G., Yulo T., Schultz J. Ocular protein alterations by near UV light. Exp Eye Res. 1973 Mar;15(3):255–264. doi: 10.1016/0014-4835(73)90145-0. [DOI] [PubMed] [Google Scholar]
  68. van Heyningen R. What happens to the human lens in cataract. Sci Am. 1975 Dec;233(6):70-2, 77-81. doi: 10.1038/scientificamerican1275-70. [DOI] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES