Skip to main content
Transactions of the American Ophthalmological Society logoLink to Transactions of the American Ophthalmological Society
. 1990;88:51–62.

An immunopathologic study of retinoblastoma protein.

S Sawaguchi 1, Y Peng 1, F Wong 1, M O Tso 1
PMCID: PMC1298577  PMID: 2095032

Abstract

We investigated the immunoreactivity of the retinoblastoma protein in eight retinoblastoma tumors of different stages of differentiation. All undifferentiated tumor cells failed to show immunoreactivity. In one patient, who had a family history of retinoblastoma and had been treated by radiation, the tumor had a large area of undifferentiated cells and small independent retinocytomas. The tumor cells in the retinocytoma and the cone cells in the adjacent retina, but not the undifferentiated tumor cells, showed positive staining with two anti-Rb antibodies. The immunoreactivity may be related to radiation or differentiation of retinoblastoma and cone cells.

Full text

PDF
51

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert D. M., Dryja T. P. Recent studies of the retinoblastoma gene. What it means to the ophthalmologist. Arch Ophthalmol. 1988 Feb;106(2):181–182. doi: 10.1001/archopht.1988.01060130191021. [DOI] [PubMed] [Google Scholar]
  2. Benedict W. F., Murphree A. L., Banerjee A., Spina C. A., Sparkes M. C., Sparkes R. S. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science. 1983 Feb 25;219(4587):973–975. doi: 10.1126/science.6336308. [DOI] [PubMed] [Google Scholar]
  3. Bogenmann E., Lochrie M. A., Simon M. I. Cone cell-specific genes expressed in retinoblastoma. Science. 1988 Apr 1;240(4848):76–78. doi: 10.1126/science.2451289. [DOI] [PubMed] [Google Scholar]
  4. DeCaprio J. A., Ludlow J. W., Figge J., Shew J. Y., Huang C. M., Lee W. H., Marsilio E., Paucha E., Livingston D. M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988 Jul 15;54(2):275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  5. Dryja T. P., Rapaport J. M., Joyce J. M., Petersen R. A. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7391–7394. doi: 10.1073/pnas.83.19.7391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dyson N., Howley P. M., Münger K., Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989 Feb 17;243(4893):934–937. doi: 10.1126/science.2537532. [DOI] [PubMed] [Google Scholar]
  7. Friend S. H., Bernards R., Rogelj S., Weinberg R. A., Rapaport J. M., Albert D. M., Dryja T. P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986 Oct 16;323(6089):643–646. doi: 10.1038/323643a0. [DOI] [PubMed] [Google Scholar]
  8. Fung Y. K., Murphree A. L., T'Ang A., Qian J., Hinrichs S. H., Benedict W. F. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987 Jun 26;236(4809):1657–1661. doi: 10.1126/science.2885916. [DOI] [PubMed] [Google Scholar]
  9. Ginoza W. The effects of ionizing radiation on nucleic acids of bacteriophages and bacterial cells. Annu Rev Microbiol. 1967;21:325–368. doi: 10.1146/annurev.mi.21.100167.001545. [DOI] [PubMed] [Google Scholar]
  10. Grabham P. W., Grand R. J., Byrd P. J., Gallimore P. H. Differentiation of normal and adenovirus-12 E1 transformed human embryo retinal cells. Exp Eye Res. 1988 Jul;47(1):123–133. doi: 10.1016/0014-4835(88)90029-2. [DOI] [PubMed] [Google Scholar]
  11. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  12. Kimchi A., Wang X. F., Weinberg R. A., Cheifetz S., Massagué J. Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science. 1988 Apr 8;240(4849):196–199. doi: 10.1126/science.2895499. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi S., Mukai N. Retinoblastoma-like tumors induced in rats by human adenovirus. Invest Ophthalmol. 1973 Nov;12(11):853–856. [PubMed] [Google Scholar]
  14. Lee W. H., Bookstein R., Hong F., Young L. J., Shew J. Y., Lee E. Y. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987 Mar 13;235(4794):1394–1399. doi: 10.1126/science.3823889. [DOI] [PubMed] [Google Scholar]
  15. Lee W. H., Shew J. Y., Hong F. D., Sery T. W., Donoso L. A., Young L. J., Bookstein R., Lee E. Y. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature. 1987 Oct 15;329(6140):642–645. doi: 10.1038/329642a0. [DOI] [PubMed] [Google Scholar]
  16. Mukai N., Kalter S. S., Cummins L. B., Matthews V. A., Nishida T., Nakajima T. Retinal tumor induced in the baboon by human adenovirus 12. Science. 1980 Nov 28;210(4473):1023–1025. doi: 10.1126/science.7434012. [DOI] [PubMed] [Google Scholar]
  17. Ponder B. Cancer. Gene losses in human tumours. Nature. 1988 Sep 29;335(6189):400–402. doi: 10.1038/335400a0. [DOI] [PubMed] [Google Scholar]
  18. Ts'o M. O., Fine B. S., Zimmerman L. E. The nature of retinoblastoma. II. Photoreceptor differentiation: an electron microscopic study. Am J Ophthalmol. 1970 Mar;69(3):350–359. doi: 10.1016/0002-9394(70)92264-6. [DOI] [PubMed] [Google Scholar]
  19. Ts'o M. O., Zimmerman L. E., Fine B. S., Ellsworth R. M. A cause of radioresistance in retinoblastoma: photoreceptor differentiation. Trans Am Acad Ophthalmol Otolaryngol. 1970 Sep-Oct;74(5):959–969. [PubMed] [Google Scholar]
  20. Ts'o M. O., Zimmerman L. E., Fine B. S. The nature of retinoblastoma. I. Photoreceptor differentiation: a clinical and histopathologic study. Am J Ophthalmol. 1970 Mar;69(3):339–349. doi: 10.1016/0002-9394(70)92263-4. [DOI] [PubMed] [Google Scholar]
  21. Varley J. M., Armour J., Swallow J. E., Jeffreys A. J., Ponder B. A., T'Ang A., Fung Y. K., Brammar W. J., Walker R. A. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours. Oncogene. 1989 Jun;4(6):725–729. [PubMed] [Google Scholar]
  22. Vrabec T., Arbizo V., Adamus G., McDowell J. H., Hargrave P. A., Donoso L. A. Rod cell-specific antigens in retinoblastoma. Arch Ophthalmol. 1989 Jul;107(7):1061–1063. doi: 10.1001/archopht.1989.01070020123044. [DOI] [PubMed] [Google Scholar]
  23. Whyte P., Buchkovich K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature. 1988 Jul 14;334(6178):124–129. doi: 10.1038/334124a0. [DOI] [PubMed] [Google Scholar]
  24. Yue B. Y., Kurosawa A., Duvall J., Goldberg M. F., Tso M. O., Sugar J. Nanophthalmic sclera. Fibronectin studies. Ophthalmology. 1988 Jan;95(1):56–60. doi: 10.1016/s0161-6420(88)33215-x. [DOI] [PubMed] [Google Scholar]
  25. Zimmerman L. E. Changing concepts concerning the pathogenesis of infectious diseases. Am J Ophthalmol. 1970 Jun;69(6):947–964. doi: 10.1016/0002-9394(70)91038-x. [DOI] [PubMed] [Google Scholar]

Articles from Transactions of the American Ophthalmological Society are provided here courtesy of American Ophthalmological Society

RESOURCES