Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):48–53. doi: 10.1016/S0006-3495(98)77765-3

Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons.

J Zhang 1, R M Davidson 1, M D Wei 1, L M Loew 1
PMCID: PMC1299360  PMID: 9449308

Abstract

An experimental method has been established to measure the electric properties of a cell membrane by combination of patch clamp and dual-wavelength ratio imaging of a fluorescent potentiometric dye, 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl ]pyridinium betaine (di-8-ANEPPS). Pairs of fluorescence images from the dye-stained membrane of neuroblastoma N1E-115 cells excited at two wavelengths were initially obtained to calculate ratio images corresponding to the resting transmembrane potential. Subsequently, a whole-cell patch was established and the membrane potential clamped to levels varying from -100 to +60 mV; at each voltage, a pair of dual-wavelength images were acquired to develop a calibration of the fluorescence ratio. Using this method, the resting potentials could accurately be measured showing that the differentiated cells were 17 mV more polarized than undifferentiated cells. The combination of electrical and optical methods can also follow changes in other membrane electric properties, such as dipole potential, and thus permit a detailed analysis of the membrane electrical properties underlying the voltage regulation of ion channels.

Full Text

The Full Text of this article is available as a PDF (96.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli A., Bianchi L., Becchetti A., Faravelli L., Coronnello M., Mini E., Olivotto M., Wanke E. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol. 1995 Dec 1;489(Pt 2):455–471. doi: 10.1113/jphysiol.1995.sp021065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bashford C. L., Pasternak C. A. Plasma membrane potential of neutrophils generated by the Na+ pump. Biochim Biophys Acta. 1985 Jul 11;817(1):174–180. doi: 10.1016/0005-2736(85)90080-x. [DOI] [PubMed] [Google Scholar]
  3. Bedlack R. S., Jr, Wei M. D., Fox S. H., Gross E., Loew L. M. Distinct electric potentials in soma and neurite membranes. Neuron. 1994 Nov;13(5):1187–1193. doi: 10.1016/0896-6273(94)90056-6. [DOI] [PubMed] [Google Scholar]
  4. Bedlack R. S., Jr, Wei M., Loew L. M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron. 1992 Sep;9(3):393–403. doi: 10.1016/0896-6273(92)90178-g. [DOI] [PubMed] [Google Scholar]
  5. Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol. 1978;83:35–88. doi: 10.1007/3-540-08907-1_2. [DOI] [PubMed] [Google Scholar]
  6. Cosgrove C., Cobbett P. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells. Brain Res Bull. 1991 Jul;27(1):53–58. doi: 10.1016/0361-9230(91)90280-w. [DOI] [PubMed] [Google Scholar]
  7. Grinvald A., Hildesheim R., Farber I. C., Anglister L. Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J. 1982 Sep;39(3):301–308. doi: 10.1016/S0006-3495(82)84520-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Higashida H., Sugimoto N., Ozutsumi K., Miki N., Matsuda M. Tetanus toxin: a rapid and selective blockade of the calcium, but not sodium, component of action potentials in cultured neuroblastoma N1E-115 cells. Brain Res. 1983 Nov 21;279(1-2):363–368. doi: 10.1016/0006-8993(83)90211-1. [DOI] [PubMed] [Google Scholar]
  11. Kimhi Y., Palfrey C., Spector I., Barak Y., Littauer U. Z. Maturation of neuroblastoma cells in the presence of dimethylsulfoxide. Proc Natl Acad Sci U S A. 1976 Feb;73(2):462–466. doi: 10.1073/pnas.73.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Littauer U. Z., Palfrey C., Kimhi Y., Spector I. Induction of differentiation in mouse neuroblastoma cells. Natl Cancer Inst Monogr. 1978 May;(48):333–337. [PubMed] [Google Scholar]
  13. Loew L. M., Scully S., Simpson L., Waggoner A. S. Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential. Nature. 1979 Oct 11;281(5731):497–499. doi: 10.1038/281497a0. [DOI] [PubMed] [Google Scholar]
  14. Loew L. M., Simpson L. L. Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer. Biophys J. 1981 Jun;34(3):353–365. doi: 10.1016/S0006-3495(81)84854-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Milligan G., Strange P. G. Use of [3H]triphenylmethylphosphonium cation for estimating membrane potential in neuroblastoma cells. J Neurochem. 1984 Dec;43(6):1515–1521. doi: 10.1111/j.1471-4159.1984.tb06071.x. [DOI] [PubMed] [Google Scholar]
  16. Montana V., Farkas D. L., Loew L. M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry. 1989 May 30;28(11):4536–4539. doi: 10.1021/bi00437a003. [DOI] [PubMed] [Google Scholar]
  17. Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
  18. Tertoolen L. G., Tilly B. C., Irvine R. F., Moolenaar W. H. Electrophysiological responses to bradykinin and microinjected inositol polyphosphates in neuroblastoma cells. Possible role of inositol 1,3,4-trisphosphate in altering membrane potential. FEBS Lett. 1987 Apr 20;214(2):365–369. doi: 10.1016/0014-5793(87)80089-3. [DOI] [PubMed] [Google Scholar]
  19. Zhang J., Loew L. M., Davidson R. M. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells. Biophys J. 1996 Nov;71(5):2501–2508. doi: 10.1016/S0006-3495(96)79443-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES