Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):63–71. doi: 10.1016/S0006-3495(98)77767-7

Interaction of Tet repressor with operator DNA and with tetracycline studied by infrared and Raman spectroscopy.

C Krafft 1, W Hinrichs 1, P Orth 1, W Saenger 1, H Welfle 1
PMCID: PMC1299362  PMID: 9449310

Abstract

Tet repressor (TetR) is involved in the most abundant mechanism of tetracycline (Tc) resistance of gram-negative bacteria. Raman spectra were measured for the class D TetR protein, for an oligodeoxyribonucleotide with sequence corresponding to operator site O1, and for the TetR:oligonucleotide complex. TetR forms a complex with [Ni-Tc]+, which does not bind to operator DNA. Raman and infrared measurements indicate nearly identical conformations of TetR with and without [Ni-Tc]+. Differences between the experimental spectrum of the TetR:operator DNA complex and the computed sum of the component spectra provide direct spectroscopic evidence for changes in DNA backbone torsions and base stacking, rearrangement of protein backbone, and specific contacts between TetR residues and DNA bases. Complex formation is connected with intensity decrease at 1376 cm(-1) (participation of thymine methyl groups), intensity increase at 1467 cm(-1) (hydrogen bond formation at guanine N7), decreased intensity ratio I854/I823 (increased hydrophobicity of tyrosine environment), increased intensity at 1363 cm(-1) (increased hydrophobicity of tryptophan ring environment), differences in the range 670-833 cm(-1) (changes in B-DNA backbone torsions and base stacking), and decreased intensity of the amide I band (structural rearrangement of TetR backbone consistent with a reduction of the distance between the two binding helices).

Full Text

The Full Text of this article is available as a PDF (232.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumeister R., Helbl V., Hillen W. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. J Mol Biol. 1992 Aug 20;226(4):1257–1270. doi: 10.1016/0022-2836(92)91065-w. [DOI] [PubMed] [Google Scholar]
  2. Benevides J. M., Kukolj G., Autexier C., Aubrey K. L., DuBow M. S., Thomas G. J., Jr Secondary structure and interaction of phage D108 Ner repressor with a 61-base-pair operator: evidence for altered protein and DNA structures in the complex. Biochemistry. 1994 Sep 6;33(35):10701–10710. doi: 10.1021/bi00201a018. [DOI] [PubMed] [Google Scholar]
  3. Benevides J. M., Stow P. L., Ilag L. L., Incardona N. L., Thomas G. J., Jr Differences in secondary structure between packaged and unpackaged single-stranded DNA of bacteriophage phi X174 determined by Raman spectroscopy: a model for phi X174 DNA packaging. Biochemistry. 1991 May 21;30(20):4855–4863. doi: 10.1021/bi00234a004. [DOI] [PubMed] [Google Scholar]
  4. Benevides J. M., Weiss M. A., Thomas G. J., Jr An altered specificity mutation in the lambda repressor induces global reorganization of the protein-DNA interface. J Biol Chem. 1994 Apr 8;269(14):10869–10878. [PubMed] [Google Scholar]
  5. Benevides J. M., Weiss M. A., Thomas G. J., Jr DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3. Biochemistry. 1991 Jun 18;30(24):5955–5963. doi: 10.1021/bi00238a020. [DOI] [PubMed] [Google Scholar]
  6. Benevides J. M., Weiss M. A., Thomas G. J., Jr Design of the helix-turn-helix motif: nonlocal effects of quaternary structure in DNA recognition investigated by laser Raman spectroscopy. Biochemistry. 1991 May 7;30(18):4381–4388. doi: 10.1021/bi00232a003. [DOI] [PubMed] [Google Scholar]
  7. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  8. Chen M. C., Lord R. C. Laser-excited Raman spectroscopy of biomolecules. VI. Some polypeptides as conformational models. J Am Chem Soc. 1974 Jul 24;96(15):4750–4752. doi: 10.1021/ja00822a004. [DOI] [PubMed] [Google Scholar]
  9. Duguid J., Bloomfield V. A., Benevides J., Thomas G. J., Jr Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys J. 1993 Nov;65(5):1916–1928. doi: 10.1016/S0006-3495(93)81263-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erfurth S. C., Peticolas W. L. Melting and premelting phenomenon in DNA by laser Raman scattering. Biopolymers. 1975 Feb;14(2):247–264. doi: 10.1002/bip.1975.360140202. [DOI] [PubMed] [Google Scholar]
  11. Ettner N., Metzger J. W., Lederer T., Hulmes J. D., Kisker C., Hinrichs W., Ellestad G. A., Hillen W. Proximity mapping of the Tet repressor-tetracycline-Fe2+ complex by hydrogen peroxide mediated protein cleavage. Biochemistry. 1995 Jan 10;34(1):22–31. doi: 10.1021/bi00001a004. [DOI] [PubMed] [Google Scholar]
  12. Ettner N., Müller G., Berens C., Backes H., Schnappinger D., Schreppel T., Pfleiderer K., Hillen W. Fast large-scale purification of tetracycline repressor variants from overproducing Escherichia coli strains. J Chromatogr A. 1996 Aug 23;742(1-2):95–105. doi: 10.1016/0021-9673(96)00232-4. [DOI] [PubMed] [Google Scholar]
  13. Fabian H., Naumann D., Misselwitz R., Ristau O., Gerlach D., Welfle H. Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study. Biochemistry. 1992 Jul 21;31(28):6532–6538. doi: 10.1021/bi00143a024. [DOI] [PubMed] [Google Scholar]
  14. Helbl V., Berens C., Hillen W. Proximity probing of Tet repressor to tet operator by dimethylsulfate reveals protected and accessible functions for each recognized base-pair in the major groove. J Mol Biol. 1995 Feb 3;245(5):538–548. doi: 10.1006/jmbi.1994.0044. [DOI] [PubMed] [Google Scholar]
  15. Hillen W., Berens C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol. 1994;48:345–369. doi: 10.1146/annurev.mi.48.100194.002021. [DOI] [PubMed] [Google Scholar]
  16. Hinrichs W., Kisker C., Düvel M., Müller A., Tovar K., Hillen W., Saenger W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science. 1994 Apr 15;264(5157):418–420. doi: 10.1126/science.8153629. [DOI] [PubMed] [Google Scholar]
  17. Kisker C., Hinrichs W., Tovar K., Hillen W., Saenger W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol. 1995 Mar 24;247(2):260–280. doi: 10.1006/jmbi.1994.0138. [DOI] [PubMed] [Google Scholar]
  18. Li T. S., Chen Z. G., Johnson J. E., Thomas G. J., Jr Structural studies of bean pod mottle virus, capsid, and RNA in crystal and solution states by laser Raman spectroscopy. Biochemistry. 1990 May 29;29(21):5018–5026. doi: 10.1021/bi00473a004. [DOI] [PubMed] [Google Scholar]
  19. Miura T., Takeuchi H., Harada I. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry. 1988 Jan 12;27(1):88–94. doi: 10.1021/bi00401a015. [DOI] [PubMed] [Google Scholar]
  20. Peviani C., Hillen W., Ettner N., Lami H., Doglia S. M., Piémont E., Ellouze C., Chabbert M. Spectroscopic investigation of Tet repressor tryptophan-43 upon specific and nonspecific DNA binding. Biochemistry. 1995 Oct 10;34(40):13007–13015. doi: 10.1021/bi00040a011. [DOI] [PubMed] [Google Scholar]
  21. Siamwiza M. N., Lord R. C., Chen M. C., Takamatsu T., Harada I., Matsuura H., Shimanouchi T. Interpretation of the doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry. 1975 Nov 4;14(22):4870–4876. doi: 10.1021/bi00693a014. [DOI] [PubMed] [Google Scholar]
  22. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  23. Tovar K., Hillen W. Tet repressor binding induced curvature of tet operator DNA. Nucleic Acids Res. 1989 Aug 25;17(16):6515–6522. doi: 10.1093/nar/17.16.6515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamaguchi A., Udagawa T., Sawai T. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem. 1990 Mar 25;265(9):4809–4813. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES