Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):138–152. doi: 10.1016/S0006-3495(98)77775-6

Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol.

R B Sessions 1, N Gibbs 1, C E Dempsey 1
PMCID: PMC1299370  PMID: 9449318

Abstract

Molecular dynamics simulations of ion channel peptides alamethicin and melittin, solvated in methanol at 27 degrees C, were run with either regular alpha-helical starting structures (alamethicin, 1 ns; melittin 500 ps either with or without chloride counterions), or with the x-ray crystal coordinates of alamethicin as a starting structure (1 ns). The hydrogen bond patterns and stabilities were characterized by analysis of the dynamics trajectories with specified hydrogen bond angle and distance criteria, and were compared with hydrogen bond patterns and stabilities previously determined from high-resolution NMR structural analysis and amide hydrogen exchange measurements in methanol. The two alamethicin simulations rapidly converged to a persistent hydrogen bond pattern with a high level of 3(10) hydrogen bonding involving the amide NH's of residues 3, 4, 9, 15, and 18. The 3(10) hydrogen bonds stabilizing amide NH's of residues C-terminal to P2 and P14 were previously proposed to explain their high amide exchange stabilities. The absence, or low levels of 3(10) hydrogen bonds at the N-terminus or for A15 NH, respectively, in the melittin simulations, is also consistent with interpretations from amide exchange analysis. Perturbation of helical hydrogen bonding in the residues before P14 (Aib10-P14, alamethicin; T11-P14, melittin) was characterized in both peptides by variable hydrogen bond patterns that included pi and gamma hydrogen bonds. The general agreement in hydrogen bond patterns determined in the simulations and from spectroscopic analysis indicates that with suitable conditions (including solvent composition and counterions where required), local hydrogen-bonded secondary structure in helical peptides may be predicted from dynamics simulations from alpha-helical starting structures. Each peptide, particularly alamethicin, underwent some large amplitude structural fluctuations in which several hydrogen bonds were cooperatively broken. The recovery of the persistent hydrogen bonding patterns after these fluctuations demonstrates the stability of intramolecular hydrogen-bonded secondary structure in methanol (consistent with spectroscopic observations), and is promising for simulations on extended timescales to characterize the nature of the backbone fluctuations that underlie amide exchange from isolated helical polypeptides.

Full Text

The Full Text of this article is available as a PDF (260.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Barranger-Mathys M., Cafiso D. S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry. 1996 Jan 16;35(2):498–505. doi: 10.1021/bi951985d. [DOI] [PubMed] [Google Scholar]
  4. Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
  5. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 1988;4(1):31–47. doi: 10.1002/prot.340040106. [DOI] [PubMed] [Google Scholar]
  6. Dempsey C. E., Bazzo R., Harvey T. S., Syperek I., Boheim G., Campbell I. D. Contribution of proline-14 to the structure and actions of melittin. FEBS Lett. 1991 Apr 9;281(1-2):240–244. doi: 10.1016/0014-5793(91)80402-o. [DOI] [PubMed] [Google Scholar]
  7. Dempsey C. E., Butler G. S. Helical structure and orientation of melittin in dispersed phospholipid membranes from amide exchange analysis in situ. Biochemistry. 1992 Dec 8;31(48):11973–11977. doi: 10.1021/bi00163a003. [DOI] [PubMed] [Google Scholar]
  8. Dempsey C. E., Handcock L. J. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements. Biophys J. 1996 Apr;70(4):1777–1788. doi: 10.1016/S0006-3495(96)79741-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dempsey C. E. Quantitation of the effects of an internal proline residue on individual hydrogen bond stabilities in an alpha-helix: pH-dependent amide exchange in melittin and [Ala-14]melittin. Biochemistry. 1992 May 19;31(19):4705–4712. doi: 10.1021/bi00134a025. [DOI] [PubMed] [Google Scholar]
  10. Dempsey C. E. pH dependence of hydrogen exchange from backbone peptide amides in apamin. Biochemistry. 1986 Jul 1;25(13):3904–3911. doi: 10.1021/bi00361a025. [DOI] [PubMed] [Google Scholar]
  11. Duclohier H., Molle G., Dugast J. Y., Spach G. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophys J. 1992 Sep;63(3):868–873. doi: 10.1016/S0006-3495(92)81637-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  13. Esposito G., Carver J. A., Boyd J., Campbell I. D. High-resolution 1H NMR study of the solution structure of alamethicin. Biochemistry. 1987 Feb 24;26(4):1043–1050. doi: 10.1021/bi00378a010. [DOI] [PubMed] [Google Scholar]
  14. Fiori W. R., Millhauser G. L. Exploring the peptide 3(10)-helix reversible alpha-helix equilibrium with double label electron spin resonance. Biopolymers. 1995;37(4):243–250. doi: 10.1002/bip.360370403. [DOI] [PubMed] [Google Scholar]
  15. Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
  16. Franklin J. C., Ellena J. F., Jayasinghe S., Kelsh L. P., Cafiso D. S. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry. 1994 Apr 5;33(13):4036–4045. doi: 10.1021/bi00179a032. [DOI] [PubMed] [Google Scholar]
  17. Fraternali F. Restrained and unrestrained molecular dynamics simulations in the NVT ensemble of alamethicin. Biopolymers. 1990;30(11-12):1083–1099. doi: 10.1002/bip.360301109. [DOI] [PubMed] [Google Scholar]
  18. Gibbs N., Sessions R. B., Williams P. B., Dempsey C. E. Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol. Biophys J. 1997 Jun;72(6):2490–2495. doi: 10.1016/S0006-3495(97)78893-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hirst J. D., Brooks C. L., 3rd Molecular dynamics simulations of isolated helices of myoglobin. Biochemistry. 1995 Jun 13;34(23):7614–7621. doi: 10.1021/bi00023a007. [DOI] [PubMed] [Google Scholar]
  20. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  21. Karle I. L., Balaram P. Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry. 1990 Jul 24;29(29):6747–6756. doi: 10.1021/bi00481a001. [DOI] [PubMed] [Google Scholar]
  22. Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
  23. Marshall G. R., Hodgkin E. E., Langs D. A., Smith G. D., Zabrocki J., Leplawy M. T. Factors governing helical preference of peptides containing multiple alpha,alpha-dialkyl amino acids. Proc Natl Acad Sci U S A. 1990 Jan;87(1):487–491. doi: 10.1073/pnas.87.1.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. North C. L., Franklin J. C., Bryant R. G., Cafiso D. S. Molecular flexibility demonstrated by paramagnetic enhancements of nuclear relaxation. Application to alamethicin: a voltage-gated peptide channel. Biophys J. 1994 Nov;67(5):1861–1866. doi: 10.1016/S0006-3495(94)80667-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Osguthorpe D. J., Dauber-Osguthorpe P. FOCUS: a program for analyzing molecular dynamics simulations, featuring digital signal-processing techniques. J Mol Graph. 1992 Sep;10(3):178-84, 164. doi: 10.1016/0263-7855(92)80053-g. [DOI] [PubMed] [Google Scholar]
  26. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  27. Pastore A., Harvey T. S., Dempsey C. E., Campbell I. D. The dynamic properties of melittin in solution. Investigations by NMR and molecular dynamics. Eur Biophys J. 1989;16(6):363–367. doi: 10.1007/BF00257885. [DOI] [PubMed] [Google Scholar]
  28. Piela L., Némethy G., Scheraga H. A. Proline-induced constraints in alpha-helices. Biopolymers. 1987 Sep;26(9):1587–1600. doi: 10.1002/bip.360260910. [DOI] [PubMed] [Google Scholar]
  29. Rohl C. A., Baldwin R. L. Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR. Biochemistry. 1994 Jun 28;33(25):7760–7767. doi: 10.1021/bi00191a003. [DOI] [PubMed] [Google Scholar]
  30. Rose G. D., Gierasch L. M., Smith J. A. Turns in peptides and proteins. Adv Protein Chem. 1985;37:1–109. doi: 10.1016/s0065-3233(08)60063-7. [DOI] [PubMed] [Google Scholar]
  31. Sankararamakrishnan R., Vishveshwara S. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies. Proteins. 1993 Jan;15(1):26–41. doi: 10.1002/prot.340150105. [DOI] [PubMed] [Google Scholar]
  32. Sansom M. S. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng. 1992 Jan;5(1):53–60. doi: 10.1093/protein/5.1.53. [DOI] [PubMed] [Google Scholar]
  33. Sansom M. S. Structure and function of channel-forming peptaibols. Q Rev Biophys. 1993 Nov;26(4):365–421. doi: 10.1017/s0033583500002833. [DOI] [PubMed] [Google Scholar]
  34. Schiffer C. A., van Gunsteren W. F. Structural stability of disulfide mutants of basic pancreatic trypsin inhibitor: a molecular dynamics study. Proteins. 1996 Sep;26(1):66–71. doi: 10.1002/(SICI)1097-0134(199609)26:1<66::AID-PROT6>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  35. Sessions R. B., Dauber-Osguthorpe P., Osguthorpe D. J. Filtering molecular dynamics trajectories to reveal low-frequency collective motions: phospholipase A2. J Mol Biol. 1989 Dec 5;210(3):617–633. doi: 10.1016/0022-2836(89)90136-8. [DOI] [PubMed] [Google Scholar]
  36. Shirley W. A., Brooks C. L., 3rd Curious structure in "canonical" alanine-based peptides. Proteins. 1997 May;28(1):59–71. doi: 10.1002/(sici)1097-0134(199705)28:1<59::aid-prot6>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  37. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  38. Tobias D. J., Gesell J., Klein M. L., Opella S. J. A simple protocol for identification of helical and mobile residues in membrane proteins. J Mol Biol. 1995 Oct 27;253(3):391–395. doi: 10.1006/jmbi.1995.0561. [DOI] [PubMed] [Google Scholar]
  39. Yee A. A., O'Neil J. D. Uniform 15N labeling of a fungal peptide: the structure and dynamics of an alamethicin by 15N and 1H NMR spectroscopy. Biochemistry. 1992 Mar 31;31(12):3135–3143. doi: 10.1021/bi00127a014. [DOI] [PubMed] [Google Scholar]
  40. Yun R. H., Anderson A., Hermans J. Proline in alpha-helix: stability and conformation studied by dynamics simulation. Proteins. 1991;10(3):219–228. doi: 10.1002/prot.340100306. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES