Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):309–318. doi: 10.1016/S0006-3495(98)77788-4

Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface.

P Brocca 1, P Berthault 1, S Sonnino 1
PMCID: PMC1299383  PMID: 9449331

Abstract

The solution structure of ganglioside G(M1) carbohydrate moiety at the surface of a 102-kDa lipid-modified-G(M1) micelle is investigated by high-resolution 1H-NMR in H2O. The micellar surface can be considered a cluster-like lateral distribution of the gangliosides, each single monomer being anchored in a carbohydrate-enriched model membrane matrix. 1H NOESY measurements at short mixing times reveal a rigid trisaccharide core -beta-GalNAc-(1-4)-[alpha-Neu5Ac-(2-3)]-beta-Gal- and a more flexible beta-Gal-(1-3)-beta-GalNAc- terminal glycosidic bond. In the lipid-modified G(M1) ganglioside micellar system, there is no evidence that intermolecular side-by-side carbohydrate interactions modulate, or alter in any way, the head-group spatial arrangement. Possible intermonomer interactions at the level of the branched trisaccharide portion were further investigated on mixed micelles of natural N-glycolyl- and N-acetylneuraminic acid containing G(M1) in D2O, taking advantage of the different NMR features of N-glycolyl- and N-acetylneuraminic acids, which allow discrimination between sialic acid ring proton signals. Measurements of the water/ganglioside-OH proton chemical exchange rates suggest hydroxyl group involvement at position 8 of sialic acid in strong intramolecular interaction processes.

Full Text

The Full Text of this article is available as a PDF (98.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acquotti D., Cantù L., Ragg E., Sonnino S. Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem. 1994 Oct 1;225(1):271–288. doi: 10.1111/j.1432-1033.1994.00271.x. [DOI] [PubMed] [Google Scholar]
  2. Acquotti D., Fronza G., Ragg E., Sonnino S. Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chem Phys Lipids. 1991 Sep;59(2):107–125. doi: 10.1016/0009-3084(91)90001-r. [DOI] [PubMed] [Google Scholar]
  3. Aubin Y., Ito Y., Paulson J. C., Prestegard J. H. Structure and dynamics of the sialic acid moiety of GM3-ganglioside at the surface of a magnetically oriented membrane. Biochemistry. 1993 Dec 14;32(49):13405–13413. doi: 10.1021/bi00212a005. [DOI] [PubMed] [Google Scholar]
  4. Aubin Y., Prestegard J. H. Structure and dynamics of sialic acid at the surface of a magnetically oriented membrane system. Biochemistry. 1993 Apr 6;32(13):3422–3428. doi: 10.1021/bi00064a028. [DOI] [PubMed] [Google Scholar]
  5. Barber K. R., Hamilton K. S., Rigby A. C., Grant C. W. Behaviour of complex oligosaccharides at a bilayer membrane surface: probed by 2H-NMR. Biochim Biophys Acta. 1994 Mar 23;1190(2):376–384. doi: 10.1016/0005-2736(94)90097-3. [DOI] [PubMed] [Google Scholar]
  6. Brocca P., Acquotti D., Sonnino S. 1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconj J. 1993 Dec;10(6):441–446. doi: 10.1007/BF00737964. [DOI] [PubMed] [Google Scholar]
  7. Brocca P., Acquotti D., Sonnino S. Nuclear Overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J. 1996 Feb;13(1):57–62. doi: 10.1007/BF01049680. [DOI] [PubMed] [Google Scholar]
  8. Brocca P., Cantu L., Sonnino S. Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5AcII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids. 1995 Aug 1;77(1):41–49. doi: 10.1016/0009-3084(95)02453-p. [DOI] [PubMed] [Google Scholar]
  9. Cantù L., Corti M., Sonnino S., Tettamanti G. Light scattering measurements on gangliosides: dependence of micellar properties on molecular structure and temperature. Chem Phys Lipids. 1986 Oct-Nov;41(3-4):315–328. doi: 10.1016/0009-3084(86)90029-0. [DOI] [PubMed] [Google Scholar]
  10. Casellato R., Brocca P., Li S. C., Li Y. T., Sonnino S. Isolation and structural characterization of N-acetyl- and N-glycolylneuraminic-acid-containing GalNAc-GD1a isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5GcII3Neu5AcGgOse4Cer, from bovine brain. Eur J Biochem. 1995 Dec 15;234(3):786–793. doi: 10.1111/j.1432-1033.1995.786_a.x. [DOI] [PubMed] [Google Scholar]
  11. Corti M., Degiorgio V., Ghidoni R., Sonnino S., Tettamanti G. Laser-light scattering investigation of the micellar properties of gangliosides. Chem Phys Lipids. 1980 Apr;26(3):225–238. doi: 10.1016/0009-3084(80)90053-5. [DOI] [PubMed] [Google Scholar]
  12. Curatolo W. Glycolipid function. Biochim Biophys Acta. 1987 Jun 24;906(2):137–160. doi: 10.1016/0304-4157(87)90009-8. [DOI] [PubMed] [Google Scholar]
  13. Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem. 1989 Jun 5;264(16):9476–9484. [PubMed] [Google Scholar]
  14. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  15. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  16. Hakomori S. Role of gangliosides in tumor progression. Prog Brain Res. 1994;101:241–250. doi: 10.1016/s0079-6123(08)61953-6. [DOI] [PubMed] [Google Scholar]
  17. Hakomori S. Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions. Biochem Soc Trans. 1993 Aug;21(3):583–595. doi: 10.1042/bst0210583. [DOI] [PubMed] [Google Scholar]
  18. Hakomori S. Tumor-associated glycolipid antigens, their metabolism and organization. Chem Phys Lipids. 1986 Dec 15;42(1-3):209–233. doi: 10.1016/0009-3084(86)90054-x. [DOI] [PubMed] [Google Scholar]
  19. Hamilton K. S., Briere K., Jarrell H. C., Grant C. W. Acyl chain length effects related to glycosphingolipid crypticity in phospholipid membranes: probed by 2H-NMR. Biochim Biophys Acta. 1994 Mar 23;1190(2):367–375. doi: 10.1016/0005-2736(94)90096-5. [DOI] [PubMed] [Google Scholar]
  20. Homans S. W. A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry. 1990 Oct 2;29(39):9110–9118. doi: 10.1021/bi00491a003. [DOI] [PubMed] [Google Scholar]
  21. Jarrell H. C., Jovall P. A., Giziewicz J. B., Turner L. A., Smith I. C. Determination of conformational properties of glycolipid head groups by 2H NMR of oriented multibilayers. Biochemistry. 1987 Apr 7;26(7):1805–1811. doi: 10.1021/bi00381a003. [DOI] [PubMed] [Google Scholar]
  22. Jarrell H. C., Wand A. J., Giziewicz J. B., Smith I. C. The dependence of glyceroglycolipid orientation and dynamics on head-group structure. Biochim Biophys Acta. 1987 Feb 12;897(1):69–82. doi: 10.1016/0005-2736(87)90316-6. [DOI] [PubMed] [Google Scholar]
  23. Jarrell H., Singh D., Grant C. W. Oligosaccharide order in a membrane-incorporated complex glycosphingolipid. Biochim Biophys Acta. 1992 Jan 31;1103(2):331–334. doi: 10.1016/0005-2736(92)90105-u. [DOI] [PubMed] [Google Scholar]
  24. Jones D. H., Barber K. R., Grant C. W. Minor influence of sialic acid on conformation of a membrane-bound oligosaccharide recognition site. Biochemistry. 1996 Apr 16;35(15):4803–4811. doi: 10.1021/bi952964m. [DOI] [PubMed] [Google Scholar]
  25. Levery S. B. 1H-NMR study of GM2 ganglioside: evidence that an interresidue amide-carboxyl hydrogen bond contributes to stabilization of a preferred conformation. Glycoconj J. 1991 Dec;8(6):484–492. doi: 10.1007/BF00769848. [DOI] [PubMed] [Google Scholar]
  26. Maggio B., Ariga T., Sturtevant J. M., Yu R. K. Thermotropic behavior of glycosphingolipids in aqueous dispersions. Biochemistry. 1985 Feb 26;24(5):1084–1092. doi: 10.1021/bi00326a003. [DOI] [PubMed] [Google Scholar]
  27. Mehlhorn I. E., Barber K. R., Grant C. W. Globoside with spin-labelled fatty acid: bilayer lateral distribution and immune recognition. Biochim Biophys Acta. 1988 Sep 1;943(3):389–404. doi: 10.1016/0005-2736(88)90370-7. [DOI] [PubMed] [Google Scholar]
  28. Mori S., Berg J. M., van Zijl P. C. Separation of intramolecular NOE and exchange peaks in water exchange spectroscopy using spin-echo filters. J Biomol NMR. 1996 Jan;7(1):77–82. doi: 10.1007/BF00190459. [DOI] [PubMed] [Google Scholar]
  29. Nores G. A., Dohi T., Taniguchi M., Hakomori S. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J Immunol. 1987 Nov 1;139(9):3171–3176. [PubMed] [Google Scholar]
  30. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  31. Poppe L., van Halbeek H., Acquotti D., Sonnino S. Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J. 1994 May;66(5):1642–1652. doi: 10.1016/S0006-3495(94)80956-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  33. Scarsdale J. N., Prestegard J. H., Yu R. K. NMR and computational studies of interactions between remote residues in gangliosides. Biochemistry. 1990 Oct 23;29(42):9843–9855. doi: 10.1021/bi00494a014. [DOI] [PubMed] [Google Scholar]
  34. Siebert H. C., Reuter G., Schauer R., von der Lieth C. W., Dabrowski J. Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry. 1992 Aug 4;31(30):6962–6971. doi: 10.1021/bi00145a014. [DOI] [PubMed] [Google Scholar]
  35. Singh D. M., Shan X., Davis J. H., Jones D. H., Grant C. W. Oligosaccharide behavior of complex natural glycosphingolipids in multicomponent model membranes. Biochemistry. 1995 Jan 17;34(2):451–463. doi: 10.1021/bi00002a009. [DOI] [PubMed] [Google Scholar]
  36. Skarjune R., Oldfield E. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadeconoylgalactosylceramides (cerebrosides). Biochim Biophys Acta. 1979 Sep 21;556(2):208–218. doi: 10.1016/0005-2736(79)90043-9. [DOI] [PubMed] [Google Scholar]
  37. Skarjune R., Oldfield E. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance studies of N-palmitoylglucosylceramide (cerebroside) head group structure. Biochemistry. 1982 Jun 22;21(13):3154–3160. doi: 10.1021/bi00256a019. [DOI] [PubMed] [Google Scholar]
  38. Sonnino S., Acquotti D., Fronza G., Cantù L., Chigorno V., Pitto M., Kirschner G., Tettamanti G. Semisynthetic preparation of N-glycolylneuraminic acid containing GM1 ganglioside: chemical characterization, physico-chemical properties and some biochemical features. Chem Phys Lipids. 1988 Mar;46(3):181–191. doi: 10.1016/0009-3084(88)90020-5. [DOI] [PubMed] [Google Scholar]
  39. Sonnino S., Cantu L., Corti M., Acquotti D., Kirschner G., Tettamanti G. Aggregation properties of semisynthetic GM1 ganglioside (II3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids. 1990 Nov;56(1):49–57. doi: 10.1016/0009-3084(90)90087-8. [DOI] [PubMed] [Google Scholar]
  40. Sonnino S., Cantù L., Corti M., Acquotti D., Venerando B. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994 May 6;71(1):21–45. doi: 10.1016/0009-3084(94)02304-2. [DOI] [PubMed] [Google Scholar]
  41. Sonnino S., Kirschner G., Ghidoni R., Acquotti D., Tettamanti G. Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res. 1985 Feb;26(2):248–257. [PubMed] [Google Scholar]
  42. Svennerholm L. Ganglioside designation. Adv Exp Med Biol. 1980;125:11–11. doi: 10.1007/978-1-4684-7844-0_2. [DOI] [PubMed] [Google Scholar]
  43. Tettamanti G., Bonali F., Marchesini S., Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta. 1973 Jan 19;296(1):160–170. doi: 10.1016/0005-2760(73)90055-6. [DOI] [PubMed] [Google Scholar]
  44. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  45. Wormald M. R., Edge C. J., Dwek R. A. The solution conformation of the Le chi group. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1214–1221. doi: 10.1016/s0006-291x(05)81325-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES