Abstract
In this paper we present a detailed analysis of the base-stacking phenomenon in different solvents, using nanosecond molecular dynamics simulations. The investigation focuses on deoxyribo- and ribodinucleoside monophosphates in aqueous and organic solutions. Organic solvents with a low dielectric constant, such as chloroform, and solvents with intermediate dielectric constants, such as dimethyl sulfoxide and methanol, were analyzed. This was also done for water, which is highly polar and has a high dielectric constant. Structural parameters such as the sugar puckering and the base-versus-base orientations, as well as the energetics of the solute-solvent interactions, were examined in the different solvents. The obtained data demonstrate that base stacking is favored in the high dielectric aqueous solution, followed by methanol and dimethyl sulfoxide with intermediate dielectric constants, and chloroform, with a low dielectric constant.
Full Text
The Full Text of this article is available as a PDF (180.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aida M. An ab initio molecular orbital study on the sequence-dependency of DNA conformation: an evaluation of intra- and inter-strand stacking interaction energy. J Theor Biol. 1988 Feb 7;130(3):327–335. doi: 10.1016/s0022-5193(88)80032-8. [DOI] [PubMed] [Google Scholar]
- Alden C. J., Kim S. H. Solvent-accessible surfaces of nucleic acids. J Mol Biol. 1979 Aug 15;132(3):411–434. doi: 10.1016/0022-2836(79)90268-7. [DOI] [PubMed] [Google Scholar]
- Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
- Beveridge D. L., DiCapua F. M. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 1989;18:431–492. doi: 10.1146/annurev.bb.18.060189.002243. [DOI] [PubMed] [Google Scholar]
- Davis R. C., Tinoco I., Jr Temperature-dependent properties of dinucleoside phosphates. Biopolymers. 1968;6(2):223–242. doi: 10.1002/bip.1968.360060206. [DOI] [PubMed] [Google Scholar]
- Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogolari F., Elcock A. H., Esposito G., Viglino P., Briggs J. M., McCammon J. A. Electrostatic effects in homeodomain-DNA interactions. J Mol Biol. 1997 Mar 28;267(2):368–381. doi: 10.1006/jmbi.1996.0842. [DOI] [PubMed] [Google Scholar]
- Frechet D., Ehrlich R., Remy P., Gabarro-Arpa J. Thermal perturbation differential spectra of ribonucleic acids. II. Nearest neighbour interactions. Nucleic Acids Res. 1979 Dec 11;7(7):1981–2001. doi: 10.1093/nar/7.7.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERSKOVITS T. T., SINGER S. J., GEIDUSCHEK E. P. Nonaqueous solutions of DNA. Denaturation in methanol and ethanol. Arch Biochem Biophys. 1961 Jul;94:99–114. doi: 10.1016/0003-9861(61)90016-9. [DOI] [PubMed] [Google Scholar]
- Hanlon S. The importance of London dispersion forces in the maintenance of the deoxyribonucleic acid helix. Biochem Biophys Res Commun. 1966 Jun 21;23(6):861–867. doi: 10.1016/0006-291x(66)90567-5. [DOI] [PubMed] [Google Scholar]
- Johnson N. P., Schleich T. Circular dichroism studies of the conformational stability of dinucleoside phosphates and related compounds in aqueous neutral salt solutions. Biochemistry. 1974 Feb 26;13(5):981–987. doi: 10.1021/bi00702a023. [DOI] [PubMed] [Google Scholar]
- Kang H., Chou P. J., Johnson W. C., Jr, Weller D., Huang S. B., Summerton J. E. Stacking interactions of ApA analogues with modified backbones. Biopolymers. 1992 Oct;32(10):1351–1363. doi: 10.1002/bip.360321009. [DOI] [PubMed] [Google Scholar]
- Kondo N. S., Danyluk S. S. Conformational properties of adenylyl-3' leads to 5'-adenosine in aqueous solution. Biochemistry. 1976 Feb 24;15(4):756–768. doi: 10.1021/bi00649a006. [DOI] [PubMed] [Google Scholar]
- Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Lee C. H., Tinoco I., Jr Studies of the conformation of modified dinucleoside phosphates containing 1,N6-ethenoadenosine and 2'-O-methylcytidine by 360-MHz 1H nuclear magnetic resonance spectroscopy. Investigation of the solution conformations of dinucleoside phosphates. Biochemistry. 1977 Dec 13;16(25):5403–5414. doi: 10.1021/bi00644a001. [DOI] [PubMed] [Google Scholar]
- Lowe M. J., Schellman J. A. Solvent effects on dinucleotide conformation. J Mol Biol. 1972 Mar 14;65(1):91–109. doi: 10.1016/0022-2836(72)90494-9. [DOI] [PubMed] [Google Scholar]
- Mierke D. F., Kessler H. Improved molecular dynamics simulations for the determination of peptide structures. Biopolymers. 1993 Jul;33(7):1003–1017. doi: 10.1002/bip.360330703. [DOI] [PubMed] [Google Scholar]
- Norberg J., Nilsson L. Influence of adjacent bases on the stacking-unstacking process of single-stranded oligonucleotides. Biopolymers. 1996 Dec;39(6):765–768. doi: 10.1002/(SICI)1097-0282(199612)39:6%3C765::AID-BIP3%3E3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- Norberg J., Nilsson L. Potential of mean force calculations of the stacking-unstacking process in single-stranded deoxyribodinucleoside monophosphates. Biophys J. 1995 Dec;69(6):2277–2285. doi: 10.1016/S0006-3495(95)80098-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norberg J., Nilsson L. Stacking-unstacking of the dinucleoside monophosphate guanylyl-3',5'-uridine studied with molecular dynamics. Biophys J. 1994 Aug;67(2):812–824. doi: 10.1016/S0006-3495(94)80541-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogasawara N., Inoue Y. Titration and temperature-dependent properties of homodinucleoside monophosphates. Evaluation of stacking equilibrium quotients for neutral and half-ionized ApA, CpC, GpG, and UpU. J Am Chem Soc. 1976 Oct 27;98(22):7054–7060. doi: 10.1021/ja00438a053. [DOI] [PubMed] [Google Scholar]
- Pohorille A., Burt S. K., MacElroy R. D. Monte Carlo simulation of the influence of solvent on nucleic acid base associations. J Am Chem Soc. 1984;106(2):402–409. doi: 10.1021/ja00314a025. [DOI] [PubMed] [Google Scholar]
- Poland D., Vournakis J. N., Scheraga H. A. Cooperative interactions in single-strand oligomers of adenylic acid. Biopolymers. 1966;4(2):223–235. doi: 10.1002/bip.1966.360040209. [DOI] [PubMed] [Google Scholar]
- Powell J. T., Richards E. G., Gratzer W. B. The nature of stacking equilibria in polynucleotides. Biopolymers. 1972 Jan;11(1):235–250. doi: 10.1002/bip.1972.360110118. [DOI] [PubMed] [Google Scholar]
- Van Holde K. E., Brahms J., Michelson A. M. Base interactions of nucleotide polymers in aqueous solution. J Mol Biol. 1965 Jul;12(3):726–739. doi: 10.1016/s0022-2836(65)80323-0. [DOI] [PubMed] [Google Scholar]
- Watts M. T., Tinoco I., Jr Role of hypermodified bases in transfer RNA. Solution properties of dinucleoside monophosphates. Biochemistry. 1978 Jun 13;17(12):2455–2463. doi: 10.1021/bi00605a033. [DOI] [PubMed] [Google Scholar]