Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):413–421. doi: 10.1016/s0006-3495(98)77798-7

Comparison of simulated and experimentally determined dynamics for a variant of the Lacl DNA-binding domain, Nlac-P.

L Swint-Kruse 1, K S Matthews 1, P E Smith 1, B M Pettitt 1
PMCID: PMC1299393  PMID: 9449341

Abstract

Recent advances in the experimentally determined structures and dynamics of the domains within LacI provide a rare context for evaluating dynamics calculations. A 1500-ps trajectory was simulated for a variant of the LacI DNA-binding domain, which consists of the first three helices in LacI and the hinge helix of the homologous PurR. Order parameters derived from dynamics simulations are compared to those obtained for the LacI DNA-binding domain with 15N relaxation NMR spectroscopy (Slijper et al., 1997. Biochemistry. 36:249-254). The MD simulations suggest that the unstructured loop between helices II and III does not exist in a discrete state under the conditions of no salt and neutral pH, but occupies a continuum of states between the DNA-bound and free structures. Simulations also indicate that the unstructured region between helix III and the hinge helix is very mobile, rendering motions of the hinge helix essentially independent of the rest of the protein. Finally, the alpha-helical hydrogen bonds in the hinge helix are broken after 1250 ps, perhaps as a prelude to helix unfolding.

Full Text

The Full Text of this article is available as a PDF (363.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Jahnke W., Wiltscheck R., Blommers M. J. Accretion of structure in staphylococcal nuclease: an 15N NMR relaxation study. J Mol Biol. 1996 Jul 26;260(4):570–587. doi: 10.1006/jmbi.1996.0422. [DOI] [PubMed] [Google Scholar]
  2. Brennan R. G., Matthews B. W. The helix-turn-helix DNA binding motif. J Biol Chem. 1989 Feb 5;264(4):1903–1906. [PubMed] [Google Scholar]
  3. Chandrasekhar I., Clore G. M., Szabo A., Gronenborn A. M., Brooks B. R. A 500 ps molecular dynamics simulation study of interleukin-1 beta in water. Correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol. 1992 Jul 5;226(1):239–250. doi: 10.1016/0022-2836(92)90136-8. [DOI] [PubMed] [Google Scholar]
  4. Chuprina V. P., Rullmann J. A., Lamerichs R. M., van Boom J. H., Boelens R., Kaptein R. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J Mol Biol. 1993 Nov 20;234(2):446–462. doi: 10.1006/jmbi.1993.1598. [DOI] [PubMed] [Google Scholar]
  5. De Lorimier R., Hellinga H. W., Spicer L. D. NMR studies of structure, hydrogen exchange, and main-chain dynamics in a disrupted-core mutant of thioredoxin. Protein Sci. 1996 Dec;5(12):2552–2565. doi: 10.1002/pro.5560051218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frank D. E., Saecker R. M., Bond J. P., Capp M. W., Tsodikov O. V., Melcher S. E., Levandoski M. M., Record M. T., Jr Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J Mol Biol. 1997 Apr 18;267(5):1186–1206. doi: 10.1006/jmbi.1997.0920. [DOI] [PubMed] [Google Scholar]
  7. Geisler N., Weber K. Isolation of amino-terminal fragment of lactose repressor necessary for DNA binding. Biochemistry. 1977 Mar 8;16(5):938–943. doi: 10.1021/bi00624a020. [DOI] [PubMed] [Google Scholar]
  8. Ha J. H., Spolar R. S., Record M. T., Jr Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol. 1989 Oct 20;209(4):801–816. doi: 10.1016/0022-2836(89)90608-6. [DOI] [PubMed] [Google Scholar]
  9. Honig B., Yang A. S. Free energy balance in protein folding. Adv Protein Chem. 1995;46:27–58. doi: 10.1016/s0065-3233(08)60331-9. [DOI] [PubMed] [Google Scholar]
  10. Jovin T. M., Geisler N., Weber K. Amino-terminal fragments of Escherichia coli lac repressor bind to DNA. Nature. 1977 Oct 20;269(5630):668–672. doi: 10.1038/269668a0. [DOI] [PubMed] [Google Scholar]
  11. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  12. Khoury A. M., Nick H. S., Lu P. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator. J Mol Biol. 1991 Jun 20;219(4):623–634. doi: 10.1016/0022-2836(91)90659-t. [DOI] [PubMed] [Google Scholar]
  13. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science. 1996 Mar 1;271(5253):1247–1254. doi: 10.1126/science.271.5253.1247. [DOI] [PubMed] [Google Scholar]
  14. Mandel A. M., Akke M., Palmer A. G., 3rd Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 1995 Feb 10;246(1):144–163. doi: 10.1006/jmbi.1994.0073. [DOI] [PubMed] [Google Scholar]
  15. Morton A., Matthews B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry. 1995 Jul 11;34(27):8576–8588. doi: 10.1021/bi00027a007. [DOI] [PubMed] [Google Scholar]
  16. Nagadoi A., Morikawa S., Nakamura H., Enari M., Kobayashi K., Yamamoto H., Sampei G., Mizobuchi K., Schumacher M. A., Brennan R. G. Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain. Structure. 1995 Nov 15;3(11):1217–1224. doi: 10.1016/s0969-2126(01)00257-x. [DOI] [PubMed] [Google Scholar]
  17. Ogata R. T., Gilbert W. DNA-binding site of lac repressor probed by dimethylsulfate methylation of lac operator. J Mol Biol. 1979 Aug 25;132(4):709–728. doi: 10.1016/0022-2836(79)90384-x. [DOI] [PubMed] [Google Scholar]
  18. Schnarr M., Maurizot J. C. Stability of the lac repressor headpiece against thermal denaturation and tryptic hydrolysis. Biochim Biophys Acta. 1982 Apr 3;702(2):155–162. doi: 10.1016/0167-4838(82)90497-6. [DOI] [PubMed] [Google Scholar]
  19. Schumacher M. A., Choi K. Y., Zalkin H., Brennan R. G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science. 1994 Nov 4;266(5186):763–770. doi: 10.1126/science.7973627. [DOI] [PubMed] [Google Scholar]
  20. Slijper M., Boelens R., Davis A. L., Konings R. N., van der Marel G. A., van Boom J. H., Kaptein R. Backbone and side chain dynamics of lac repressor headpiece (1-56) and its complex with DNA. Biochemistry. 1997 Jan 7;36(1):249–254. doi: 10.1021/bi961670d. [DOI] [PubMed] [Google Scholar]
  21. Slijper M., Bonvin A. M., Boelens R., Kaptein R. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator. J Mol Biol. 1996 Jun 21;259(4):761–773. doi: 10.1006/jmbi.1996.0356. [DOI] [PubMed] [Google Scholar]
  22. Smith P. E., van Schaik R. C., Szyperski T., Wüthrich K., van Gunsteren W. F. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. J Mol Biol. 1995 Feb 17;246(2):356–365. doi: 10.1006/jmbi.1994.0090. [DOI] [PubMed] [Google Scholar]
  23. Spronk C. A., Slijper M., van Boom J. H., Kaptein R., Boelens R. Formation of the hinge helix in the lac repressor is induced upon binding to the lac operator. Nat Struct Biol. 1996 Nov;3(11):916–919. doi: 10.1038/nsb1196-916. [DOI] [PubMed] [Google Scholar]
  24. Steinbach P. J., Ansari A., Berendzen J., Braunstein D., Chu K., Cowen B. R., Ehrenstein D., Frauenfelder H., Johnson J. B., Lamb D. C. Ligand binding to heme proteins: connection between dynamics and function. Biochemistry. 1991 Apr 23;30(16):3988–4001. doi: 10.1021/bi00230a026. [DOI] [PubMed] [Google Scholar]
  25. Weickert M. J., Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed] [Google Scholar]
  26. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES