Abstract
Quaternary structure polymorphism found in quasiequivalent virus capsids provides a static framework for studying the dynamics of protein interactions. The same protein subunits are found in different structural environments within these particles, and in some cases, the molecular switching required for the polymorphic quaternary interactions is obvious from high-resolution crystallographic studies. Employing atomic resolution structures, molecular mechanics, and continuum electrostatic methods, we have computed association energies for unique subunit interfaces of three icosahedral viruses, black beetle virus, southern bean virus, and human rhinovirus 14. To quantify the chemical determinants of quasiequivalence, the energetic contributions of individual residues forming quasiequivalent interfaces were calculated and compared. The potential significance of the differences in stabilities at quasiequivalent interfaces was then explored with the combinatorial assembly approach. The analysis shows that the unique association energies computed for each virus serve as a sensitive basis set that may determine distinct intermediates and pathways of virus capsid assembly. The pathways for the quasiequivalent viruses displayed isoenergetic oligomers at specific points, suggesting that these may determine the quaternary structure polymorphism required for the assembly of a quasiequivalent particle.
Full Text
The Full Text of this article is available as a PDF (319.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold E., Rossmann M. G. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 A. J Mol Biol. 1990 Feb 20;211(4):763–801. doi: 10.1016/0022-2836(90)90076-x. [DOI] [PubMed] [Google Scholar]
- CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
- Canady M. A., Larson S. B., Day J., McPherson A. Crystal structure of turnip yellow mosaic virus. Nat Struct Biol. 1996 Sep;3(9):771–781. doi: 10.1038/nsb0996-771. [DOI] [PubMed] [Google Scholar]
- Dasmahapatra B., Dasgupta R., Saunders K., Selling B., Gallagher T., Kaesberg P. Infectious RNA derived by transcription from cloned cDNA copies of the genomic RNA of an insect virus. Proc Natl Acad Sci U S A. 1986 Jan;83(1):63–66. doi: 10.1073/pnas.83.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher A. J., Johnson J. E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature. 1993 Jan 14;361(6408):176–179. doi: 10.1038/361176a0. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins. 1988;4(1):7–18. doi: 10.1002/prot.340040104. [DOI] [PubMed] [Google Scholar]
- Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munshi S., Liljas L., Cavarelli J., Bomu W., McKinney B., Reddy V., Johnson J. E. The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J Mol Biol. 1996 Aug 9;261(1):1–10. doi: 10.1006/jmbi.1996.0437. [DOI] [PubMed] [Google Scholar]
- Rossmann M. G., Johnson J. E. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
- Schneemann A., Dasgupta R., Johnson J. E., Rueckert R. R. Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. J Virol. 1993 May;67(5):2756–2763. doi: 10.1128/jvi.67.5.2756-2763.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shakhnovich E. I., Gutin A. M. Engineering of stable and fast-folding sequences of model proteins. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7195–7199. doi: 10.1073/pnas.90.15.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Silva A. M., Rossmann M. G. Refined structure of southern bean mosaic virus at 2.9 A resolution. J Mol Biol. 1987 Sep 5;197(1):69–87. doi: 10.1016/0022-2836(87)90610-3. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Chase E. S., Schmidt T. J., Olson N. H., Baker T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996 Sep 26;383(6598):350–354. doi: 10.1038/383350a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speir J. A., Munshi S., Wang G., Baker T. S., Johnson J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure. 1995 Jan 15;3(1):63–78. doi: 10.1016/s0969-2126(01)00135-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wery J. P., Reddy V. S., Hosur M. V., Johnson J. E. The refined three-dimensional structure of an insect virus at 2.8 A resolution. J Mol Biol. 1994 Jan 14;235(2):565–586. doi: 10.1006/jmbi.1994.1014. [DOI] [PubMed] [Google Scholar]
- Zlotnick A., Reddy V. S., Dasgupta R., Schneemann A., Ray W. J., Jr, Rueckert R. R., Johnson J. E. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem. 1994 May 6;269(18):13680–13684. [PubMed] [Google Scholar]