Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):559–568. doi: 10.1016/S0006-3495(98)77814-2

Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures.

P A Thuman-Commike 1, B Greene 1, J A Malinski 1, J King 1, W Chiu 1
PMCID: PMC1299408  PMID: 9449356

Abstract

Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.

Full Text

The Full Text of this article is available as a PDF (441.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian M., Dubochet J., Lepault J., McDowall A. W. Cryo-electron microscopy of viruses. Nature. 1984 Mar 1;308(5954):32–36. doi: 10.1038/308032a0. [DOI] [PubMed] [Google Scholar]
  2. Baker T. S., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J Virol. 1990 Feb;64(2):563–573. doi: 10.1128/jvi.64.2.563-573.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazinet C., King J. Initiation of P22 procapsid assembly in vivo. J Mol Biol. 1988 Jul 5;202(1):77–86. doi: 10.1016/0022-2836(88)90520-7. [DOI] [PubMed] [Google Scholar]
  4. Bazinet C., Villafane R., King J. Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly. J Mol Biol. 1990 Dec 5;216(3):701–716. doi: 10.1016/0022-2836(90)90393-Z. [DOI] [PubMed] [Google Scholar]
  5. Berger B., Shor P. W., Tucker-Kellogg L., King J. Local rule-based theory of virus shell assembly. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7732–7736. doi: 10.1073/pnas.91.16.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  7. Casjens S., King J. P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct. 1974;2(2-4):202–224. doi: 10.1002/jss.400020215. [DOI] [PubMed] [Google Scholar]
  8. Conway J. F., Duda R. L., Cheng N., Hendrix R. W., Steven A. C. Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol. 1995 Oct 13;253(1):86–99. doi: 10.1006/jmbi.1995.0538. [DOI] [PubMed] [Google Scholar]
  9. Crowther R. A., Kiselev N. A., Böttcher B., Berriman J. A., Borisova G. P., Ose V., Pumpens P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell. 1994 Jun 17;77(6):943–950. doi: 10.1016/0092-8674(94)90142-2. [DOI] [PubMed] [Google Scholar]
  10. Crowther R. A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):221–230. doi: 10.1098/rstb.1971.0054. [DOI] [PubMed] [Google Scholar]
  11. D'Halluin J. C., Martin G. R., Torpier G., Boulanger P. A. Adenovirus type 2 assembly analyzed by reversible cross-linking of labile intermediates. J Virol. 1978 May;26(2):357–363. doi: 10.1128/jvi.26.2.357-363.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dokland T., Lindqvist B. H., Fuller S. D. Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacteriophage system. EMBO J. 1992 Mar;11(3):839–846. doi: 10.1002/j.1460-2075.1992.tb05121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dokland T., Murialdo H. Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol. 1993 Oct 20;233(4):682–694. doi: 10.1006/jmbi.1993.1545. [DOI] [PubMed] [Google Scholar]
  14. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  15. Earnshaw W. C., Casjens S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell. 1980 Sep;21(2):319–331. doi: 10.1016/0092-8674(80)90468-7. [DOI] [PubMed] [Google Scholar]
  16. Earnshaw W., King J. Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. J Mol Biol. 1978 Dec 25;126(4):721–747. doi: 10.1016/0022-2836(78)90017-7. [DOI] [PubMed] [Google Scholar]
  17. Edvardsson B., Everitt E., Jörnvall H., Prage L., Philipson L. Intermediates in adenovirus assembly. J Virol. 1976 Aug;19(2):533–547. doi: 10.1128/jvi.19.2.533-547.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fisher A. J., Johnson J. E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature. 1993 Jan 14;361(6408):176–179. doi: 10.1038/361176a0. [DOI] [PubMed] [Google Scholar]
  19. Frank J., Verschoor A., Boublik M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science. 1981 Dec 18;214(4527):1353–1355. doi: 10.1126/science.7313694. [DOI] [PubMed] [Google Scholar]
  20. Fukami A., Adachi K. A new method of preparation of a self-perforated micro plastic grid and its application. J Electron Microsc (Tokyo) 1965;14(2):112–118. [PubMed] [Google Scholar]
  21. Fuller S. D. The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell. 1987 Mar 27;48(6):923–934. doi: 10.1016/0092-8674(87)90701-x. [DOI] [PubMed] [Google Scholar]
  22. Greene B., King J. Binding of scaffolding subunits within the P22 procapsid lattice. Virology. 1994 Nov 15;205(1):188–197. doi: 10.1006/viro.1994.1634. [DOI] [PubMed] [Google Scholar]
  23. Greene B., King J. Scaffolding mutants identifying domains required for P22 procapsid assembly and maturation. Virology. 1996 Nov 1;225(1):82–96. doi: 10.1006/viro.1996.0577. [DOI] [PubMed] [Google Scholar]
  24. Guo P. X., Erickson S., Xu W., Olson N., Baker T. S., Anderson D. Regulation of the phage phi 29 prohead shape and size by the portal vertex. Virology. 1991 Jul;183(1):366–373. doi: 10.1016/0042-6822(91)90149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson J. E. Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):27–33. doi: 10.1073/pnas.93.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katsura I., Kobayashi H. Structure and inherent properties of the bacteriophage lambda head shell. VII. Molecular design of the form-determining major capsid protein. J Mol Biol. 1990 Jun 5;213(3):503–511. doi: 10.1016/S0022-2836(05)80211-6. [DOI] [PubMed] [Google Scholar]
  27. Katsura I. Structure and inherent properties of the bacteriophage lambda head shell. IV. Small-head mutants. J Mol Biol. 1983 Dec 15;171(3):297–317. doi: 10.1016/0022-2836(83)90095-5. [DOI] [PubMed] [Google Scholar]
  28. Kellenberger E. Form determination of the heads of bacteriophages. Eur J Biochem. 1990 Jun 20;190(2):233–248. doi: 10.1111/j.1432-1033.1990.tb15568.x. [DOI] [PubMed] [Google Scholar]
  29. King J., Casjens S. Catalytic head assembling protein in virus morphogenesis. Nature. 1974 Sep 13;251(5471):112–119. doi: 10.1038/251112a0. [DOI] [PubMed] [Google Scholar]
  30. King J., Lenk E. V., Botstein D. Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol. 1973 Nov 15;80(4):697–731. doi: 10.1016/0022-2836(73)90205-2. [DOI] [PubMed] [Google Scholar]
  31. Liddington R. C., Yan Y., Moulai J., Sahli R., Benjamin T. L., Harrison S. C. Structure of simian virus 40 at 3.8-A resolution. Nature. 1991 Nov 28;354(6351):278–284. doi: 10.1038/354278a0. [DOI] [PubMed] [Google Scholar]
  32. Lindqvist B. H., Dehò G., Calendar R. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol Rev. 1993 Sep;57(3):683–702. doi: 10.1128/mr.57.3.683-702.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Marvik O. J., Dokland T., Nøkling R. H., Jacobsen E., Larsen T., Lindqvist B. H. The capsid size-determining protein Sid forms an external scaffold on phage P4 procapsids. J Mol Biol. 1995 Aug 4;251(1):59–75. doi: 10.1006/jmbi.1995.0416. [DOI] [PubMed] [Google Scholar]
  34. Marvik O. J., Jacobsen E., Dokland T., Lindqvist B. H. Bacteriophage P2 and P4 morphogenesis: assembly precedes proteolytic processing of the capsid proteins. Virology. 1994 Nov 15;205(1):51–65. doi: 10.1006/viro.1994.1619. [DOI] [PubMed] [Google Scholar]
  35. Murialdo H., Becker A. Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiol Rev. 1978 Sep;42(3):529–576. doi: 10.1128/mr.42.3.529-576.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parker M. H., Stafford W. F., 3rd, Prevelige P. E., Jr Bacteriophage P22 scaffolding protein forms oligomers in solution. J Mol Biol. 1997 May 9;268(3):655–665. doi: 10.1006/jmbi.1997.0995. [DOI] [PubMed] [Google Scholar]
  37. Prasad B. V., Prevelige P. E., Marietta E., Chen R. O., Thomas D., King J., Chiu W. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J Mol Biol. 1993 May 5;231(1):65–74. doi: 10.1006/jmbi.1993.1257. [DOI] [PubMed] [Google Scholar]
  38. Prevelige P. E., Jr, Thomas D., King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J. 1993 Mar;64(3):824–835. doi: 10.1016/S0006-3495(93)81443-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prevelige P. E., Jr, Thomas D., King J. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol. 1988 Aug 20;202(4):743–757. doi: 10.1016/0022-2836(88)90555-4. [DOI] [PubMed] [Google Scholar]
  40. Radermacher M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech. 1988 Aug;9(4):359–394. doi: 10.1002/jemt.1060090405. [DOI] [PubMed] [Google Scholar]
  41. Ray P., Murialdo H. The role of gene Nu3 in bacteriophage lambda head morphogenesis. Virology. 1975 Mar;64(1):247–263. doi: 10.1016/0042-6822(75)90096-3. [DOI] [PubMed] [Google Scholar]
  42. Rossmann M. G., Johnson J. E. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
  43. Saxton W. O., Baumeister W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc. 1982 Aug;127(Pt 2):127–138. doi: 10.1111/j.1365-2818.1982.tb00405.x. [DOI] [PubMed] [Google Scholar]
  44. Serwer P., Watson R. H. Function of an internal bacteriophage T7 core during assembly of a T7 procapsid. J Virol. 1982 May;42(2):595–601. doi: 10.1128/jvi.42.2.595-601.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stewart P. L., Burnett R. M., Cyrklaff M., Fuller S. D. Image reconstruction reveals the complex molecular organization of adenovirus. Cell. 1991 Oct 4;67(1):145–154. doi: 10.1016/0092-8674(91)90578-m. [DOI] [PubMed] [Google Scholar]
  46. Thomas D., Prevelige P., Jr A pilot protein participates in the initiation of P22 procapsid assembly. Virology. 1991 Jun;182(2):673–681. doi: 10.1016/0042-6822(91)90608-e. [DOI] [PubMed] [Google Scholar]
  47. Thuman-Commike P. A., Chiu W. Improved common line-based icosahedral particle image orientation estimation algorithms. Ultramicroscopy. 1997 Aug 1;68(4):231–255. doi: 10.1016/s0304-3991(97)00033-8. [DOI] [PubMed] [Google Scholar]
  48. Thuman-Commike P. A., Greene B., Jakana J., Prasad B. V., King J., Prevelige P. E., Jr, Chiu W. Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. J Mol Biol. 1996 Jul 5;260(1):85–98. doi: 10.1006/jmbi.1996.0383. [DOI] [PubMed] [Google Scholar]
  49. Wery J. P., Reddy V. S., Hosur M. V., Johnson J. E. The refined three-dimensional structure of an insect virus at 2.8 A resolution. J Mol Biol. 1994 Jan 14;235(2):565–586. doi: 10.1006/jmbi.1994.1014. [DOI] [PubMed] [Google Scholar]
  50. Zhou Z. H., Hardt S., Wang B., Sherman M. B., Jakana J., Chiu W. CTF determination of images of ice-embedded single particles using a graphics interface. J Struct Biol. 1996 Jan-Feb;116(1):216–222. doi: 10.1006/jsbi.1996.0033. [DOI] [PubMed] [Google Scholar]
  51. Zhou Z. H., Prasad B. V., Jakana J., Rixon F. J., Chiu W. Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J Mol Biol. 1994 Sep 30;242(4):456–469. doi: 10.1006/jmbi.1994.1594. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES