Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):569–575. doi: 10.1016/S0006-3495(98)77815-4

Quasi- and nonequivalence in the structure of bacterial flagellar filament.

K Hasegawa 1, I Yamashita 1, K Namba 1
PMCID: PMC1299409  PMID: 9449357

Abstract

In supercoiled forms of flagellar filaments, which are thought to be produced by combinations of two distinct subunit lattices, the lattices are elastically deformed in 11 different ways, depending on their azimuthal positions on the circumference of a tube with 11 protofilaments. Those two interactions are nonequivalent as opposed to quasiequivalent ones in elastically deformed lattices of otherwise identical interactions. The term nonequivalence is defined to represent different bonding interactions, and quasiequivalent is used to describe deformed but conserved bonding interactions. By using two distinct lattices that were accurately determined by x-ray fiber diffraction, 10 possible supercoiled forms of flagellar filaments were simulated, based on a bistable-subunit packing model. Comparison to the observed forms showed good agreement, indicating that the model and determined lattice parameters effectively represent realistic features of the structure. The simulated quasiequivalent lattices have been compared to the two nonequivalent lattices, revealing an interesting feature: the maximum deviation in the intersubunit distance by elastic deformation is almost three-quarters of the difference between the two distinct lattices, demonstrating a balanced coexistence of a well-defined conformational distinction and extensive adaptability in the molecular structure of flagellin and its packing interactions.

Full Text

The Full Text of this article is available as a PDF (254.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASAKURA S., EGUCHI G., IINO T. RECONSTITUTION OF BACTERIAL FLAGELLA IN VITRO. J Mol Biol. 1964 Oct;10:42–56. doi: 10.1016/s0022-2836(64)80026-7. [DOI] [PubMed] [Google Scholar]
  2. Asakura S., Iino T. Polymorphism of Salmonella flagella as investigated by means of in vitro copolymerization of flagellins derived from various strains. J Mol Biol. 1972 Feb 28;64(1):251–268. doi: 10.1016/0022-2836(72)90334-8. [DOI] [PubMed] [Google Scholar]
  3. Asakura S. Polymerization of flagellin and polymorphism of flagella. Adv Biophys. 1970;1:99–155. [PubMed] [Google Scholar]
  4. Berg H. C., Anderson R. A. Bacteria swim by rotating their flagellar filaments. Nature. 1973 Oct 19;245(5425):380–382. doi: 10.1038/245380a0. [DOI] [PubMed] [Google Scholar]
  5. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  6. Calladine C. R. Construction of bacterial flagella. Nature. 1975 May 8;255(5504):121–124. doi: 10.1038/255121a0. [DOI] [PubMed] [Google Scholar]
  7. Calladine C. R. Design requirements for the construction of bacterial flagella. J Theor Biol. 1976 Apr;57(2):469–489. doi: 10.1016/0022-5193(76)90016-3. [DOI] [PubMed] [Google Scholar]
  8. Hotani H. Micro-video study of moving bacterial flagellar filaments. III. Cyclic transformation induced by mechanical force. J Mol Biol. 1982 Apr 25;156(4):791–806. doi: 10.1016/0022-2836(82)90142-5. [DOI] [PubMed] [Google Scholar]
  9. Hyman H. C., Trachtenberg S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J Mol Biol. 1991 Jul 5;220(1):79–88. doi: 10.1016/0022-2836(91)90382-g. [DOI] [PubMed] [Google Scholar]
  10. Iino T., Mitani M. Flagella-shape mutants in Salmonella. J Gen Microbiol. 1966 Jul;44(1):27–40. doi: 10.1099/00221287-44-1-27. [DOI] [PubMed] [Google Scholar]
  11. Iino T., Oguchi T., Kuroiwa T. Polymorphism in a flagellar-shape mutant of Salmonella typhimurium. J Gen Microbiol. 1974 Mar;81(1):37–45. doi: 10.1099/00221287-81-1-37. [DOI] [PubMed] [Google Scholar]
  12. Kamiya R., Asakura S. Flagellar transformations at alkaline pH. J Mol Biol. 1976 Dec;108(2):513–518. doi: 10.1016/s0022-2836(76)80133-7. [DOI] [PubMed] [Google Scholar]
  13. Kamiya R., Asakura S. Helical transformations of Salmonella flagella in vitro. J Mol Biol. 1976 Sep 5;106(1):167–186. doi: 10.1016/0022-2836(76)90306-5. [DOI] [PubMed] [Google Scholar]
  14. Kamiya R., Asakura S., Wakabayashi K., Namba K. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J Mol Biol. 1979 Jul 15;131(4):725–742. doi: 10.1016/0022-2836(79)90199-2. [DOI] [PubMed] [Google Scholar]
  15. Kamiya R., Asakura S., Yamaguchi S. Formation of helical filaments by copolymerization of two types of 'straight' flagellins. Nature. 1980 Aug 7;286(5773):628–630. doi: 10.1038/286628a0. [DOI] [PubMed] [Google Scholar]
  16. Kanto S., Okino H., Aizawa S., Yamaguchi S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J Mol Biol. 1991 Jun 5;219(3):471–480. doi: 10.1016/0022-2836(91)90187-b. [DOI] [PubMed] [Google Scholar]
  17. Larsen S. H., Reader R. W., Kort E. N., Tso W. W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature. 1974 May 3;249(452):74–77. doi: 10.1038/249074a0. [DOI] [PubMed] [Google Scholar]
  18. Macnab R. M., Ornston M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol. 1977 May 5;112(1):1–30. doi: 10.1016/s0022-2836(77)80153-8. [DOI] [PubMed] [Google Scholar]
  19. Martinez R. J., Ichiki A. T., Lundh N. P., Tronick S. R. A single amino acid substitution responsible for altered flagellar morphology. J Mol Biol. 1968 Jun 28;34(3):559–564. doi: 10.1016/0022-2836(68)90180-0. [DOI] [PubMed] [Google Scholar]
  20. Mimori-Kiyosue Y., Vonderviszt F., Yamashita I., Fujiyoshi Y., Namba K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15108–15113. doi: 10.1073/pnas.93.26.15108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mimori Y., Yamashita I., Murata K., Fujiyoshi Y., Yonekura K., Toyoshima C., Namba K. The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. J Mol Biol. 1995 May 26;249(1):69–87. doi: 10.1006/jmbi.1995.0281. [DOI] [PubMed] [Google Scholar]
  22. Morgan D. G., Owen C., Melanson L. A., DeRosier D. J. Structure of bacterial flagellar filaments at 11 A resolution: packing of the alpha-helices. J Mol Biol. 1995 May 26;249(1):88–110. doi: 10.1006/jmbi.1995.0282. [DOI] [PubMed] [Google Scholar]
  23. Namba K., Vonderviszt F. Molecular architecture of bacterial flagellum. Q Rev Biophys. 1997 Feb;30(1):1–65. doi: 10.1017/s0033583596003319. [DOI] [PubMed] [Google Scholar]
  24. Namba K., Yamashita I., Vonderviszt F. Structure of the core and central channel of bacterial flagella. Nature. 1989 Dec 7;342(6250):648–654. doi: 10.1038/342648a0. [DOI] [PubMed] [Google Scholar]
  25. O'Brien E. J., Bennett P. M. Structure of straight flagella from a mutant Salmonella. J Mol Biol. 1972 Sep 14;70(1):133–152. doi: 10.1016/0022-2836(72)90168-4. [DOI] [PubMed] [Google Scholar]
  26. Silverman M. R., Simon M. I. Flagellar assembly mutants in Escherichia coli. J Bacteriol. 1972 Nov;112(2):986–993. doi: 10.1128/jb.112.2.986-993.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES