Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):595–603. doi: 10.1016/S0006-3495(98)77818-X

Structure of the stacked disk aggregate of tobacco mosaic virus protein.

R Díaz-Avalos 1, D L Caspar 1
PMCID: PMC1299412  PMID: 9449360

Abstract

The coat protein of tobacco mosaic virus is known to form three different classes of aggregate, depending on environmental conditions, namely helical, disk, and A-protein. Among the disk aggregates, there are four-layer, six-layer, and long stacks, which can be obtained by varying the ionic strength and temperature conditions during the association process. The four-layer aggregate has been crystallized, and its structure solved to atomic resolution. The stacked disk aggregate had been presumed to be built of a polar two-layer disk related to the crystalline A and B rings. A study using monoclonal antibodies specific to the bottom surface of TMV protein demonstrated that the stacked disk aggregate is bipolar, and suggested that the repeating two-layer unit might be similar to the dihedrally symmetrical A-ring pair in the disk crystal. In this paper we present a three-dimensional reconstruction of the stacked disk aggregate obtained by electron microscopy of ice-embedded samples. After modeling of the structure, we found the ring pairs to have the same quaternary structure as the A-ring pair of the four-layer aggregate. The resolution achieved in the image processing of the electron micrographs is on the order of 9 A in the meridional direction and 12 A in the equatorial. The identification of the structure of the stacked disk with the A-ring pair of the disk crystal provides an explanation of the observation that the axial periodicity of the disk pair, which is approximately 53 A when fully hydrated, can shrink to approximately 43 A in the dry state.

Full Text

The Full Text of this article is available as a PDF (403.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Klug A. Three-dimensional image reconstructions of the contractile tail of T4 bacteriophage. J Mol Biol. 1975 Nov 25;99(1):51–64. doi: 10.1016/s0022-2836(75)80158-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhyravbhatla B., Watowich S. J., Caspar D. L. Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-A resolution. Biophys J. 1998 Jan;74(1):604–615. doi: 10.1016/S0006-3495(98)77819-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler P. J., Klug A. Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat New Biol. 1971 Jan 13;229(2):47–50. doi: 10.1038/newbio229047a0. [DOI] [PubMed] [Google Scholar]
  4. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  5. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  6. COMMONER B., YAMADA M., RODENBERG S. D., WANG T. Y., BASLER E., Jr The proteins synthesized in tissue infected with tobacco mosaic virus. Science. 1953 Nov 6;118(3071):529–534. doi: 10.1126/science.118.3071.529. [DOI] [PubMed] [Google Scholar]
  7. Caspar D. L., Holmes K. C. Structure of dahlemense strain of tobacco mosaic virus: a periodically deformed helix. J Mol Biol. 1969 Nov 28;46(1):99–133. doi: 10.1016/0022-2836(69)90060-6. [DOI] [PubMed] [Google Scholar]
  8. Caspar D. L., Namba K. Switching in the self-assembly of tobacco mosaic virus. Adv Biophys. 1990;26:157–185. doi: 10.1016/0065-227x(90)90011-h. [DOI] [PubMed] [Google Scholar]
  9. Champness J. N., Bloomer A. C., Bricogne G., Butler P. G., Klug A. The structure of the protein disk of tobacco mosaic virus to 5A resolution. Nature. 1976 Jan 1;259(5538):20–24. doi: 10.1038/259020a0. [DOI] [PubMed] [Google Scholar]
  10. DARNELL J. E., Jr, EAGLE H. The biosynthesis of poliovirus in cell cultures. Adv Virus Res. 1960;7:1–26. doi: 10.1016/s0065-3527(08)60004-4. [DOI] [PubMed] [Google Scholar]
  11. DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
  12. Dore I., Ruhlmann C., Oudet P., Cahoon M., Caspar D. L., Van Regenmortel M. H. Polarity of binding of monoclonal antibodies to tobacco mosaic virus rods and stacked disks. Virology. 1990 May;176(1):25–29. doi: 10.1016/0042-6822(90)90226-h. [DOI] [PubMed] [Google Scholar]
  13. Dore I., Weiss E., Altschuh D., Van Regenmortel M. H. Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology. 1988 Feb;162(2):279–289. doi: 10.1016/0042-6822(88)90467-9. [DOI] [PubMed] [Google Scholar]
  14. Egelman E. H. An algorithm for straightening images of curved filamentous structures. Ultramicroscopy. 1986;19(4):367–373. doi: 10.1016/0304-3991(86)90096-3. [DOI] [PubMed] [Google Scholar]
  15. FRANKLIN R. E., COMMONER B. Abnormal protein associated with tobacco mosaic virus; x-ray diffraction by an abnormal protein (B8) associated with tobacco mosaic virus. Nature. 1955 Jun 18;175(4468):1076–1077. doi: 10.1038/1751076a0. [DOI] [PubMed] [Google Scholar]
  16. Finch J. T., Klug A. The structural relationship between the stacked disk and helical polymers of tobacco mosaic virus protein. J Mol Biol. 1974 Aug 25;87(4):633–640. doi: 10.1016/0022-2836(74)90074-6. [DOI] [PubMed] [Google Scholar]
  17. Raghavendra K., Adams M. L., Schuster T. M. Tobacco mosaic virus protein aggregates in solution: structural comparison of 20S aggregates with those near conditions for disk crystallization. Biochemistry. 1985 Jun 18;24(13):3298–3304. doi: 10.1021/bi00334a034. [DOI] [PubMed] [Google Scholar]
  18. Raghavendra K., Salunke D. M., Caspar D. L., Schuster T. M. Disk aggregates of tobacco mosaic virus protein in solution: electron microscopy observations. Biochemistry. 1986 Oct 7;25(20):6276–6279. doi: 10.1021/bi00368a066. [DOI] [PubMed] [Google Scholar]
  19. Scheele R. B., Lauffer M. A. Acid-base titrations of tobacco mosaic virus and tobacco mosaic virus protein. Biochemistry. 1967 Oct;6(10):3076–3081. doi: 10.1021/bi00862a014. [DOI] [PubMed] [Google Scholar]
  20. Toyoshima C., Unwin N. Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images. Ultramicroscopy. 1988;25(4):279–291. doi: 10.1016/0304-3991(88)90003-4. [DOI] [PubMed] [Google Scholar]
  21. Unwin P. N. Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. II. The influence of electron irradiation of the stain distribution. J Mol Biol. 1974 Aug 25;87(4):657–670. doi: 10.1016/0022-2836(74)90076-x. [DOI] [PubMed] [Google Scholar]
  22. Unwin P. N., Klug A. Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. I. Three-dimensional image reconstruction. J Mol Biol. 1974 Aug 25;87(4):641–656. doi: 10.1016/0022-2836(74)90075-8. [DOI] [PubMed] [Google Scholar]
  23. Zamyatnin A. A. Protein volume in solution. Prog Biophys Mol Biol. 1972;24:107–123. doi: 10.1016/0079-6107(72)90005-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES