Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):604–615. doi: 10.1016/S0006-3495(98)77819-1

Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-A resolution.

B Bhyravbhatla 1, S J Watowich 1, D L Caspar 1
PMCID: PMC1299413  PMID: 9449361

Abstract

Previous x-ray studies (2.8-A resolution) on crystals of tobacco mosaic virus coat protein grown from solutions containing high salt have characterized the structure of the protein aggregate as a dimer of a bilayered cylindrical disk formed by 34 chemically identical subunits. We have determined the crystal structure of the disk aggregate at 2.4-A resolution using x-ray diffraction from crystals maintained at cryogenic temperatures. Two regions of interest have been extensively refined. First, residues of the low-radius loop region, which were not modeled previously, have been traced completely in our electron density maps. Similar to the structure observed in the virus, the right radial helix in each protomer ends around residue 87, after which the protein chain forms an extended chain that extends to the left radial helix. The left radial helix appears as a long alpha-helix with high temperature factors for the main-chain atoms in the inner portion. The side-chain atoms in this region (residues 90-110) are not visible in the electron density maps and are assumed to be disordered. Second, interactions between subunits in the symmetry-related central A pair have been determined. No direct protein-protein interactions are observed in the major overlap region between these subunits; all interactions are mediated by two layers of ordered solvent molecules. The current structure emphasizes the importance of water in biological macromolecular assemblies.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bella J., Eaton M., Brodsky B., Berman H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994 Oct 7;266(5182):75–81. doi: 10.1126/science.7695699. [DOI] [PubMed] [Google Scholar]
  2. Butler P. J., Klug A. Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat New Biol. 1971 Jan 13;229(2):47–50. doi: 10.1038/newbio229047a0. [DOI] [PubMed] [Google Scholar]
  3. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  4. Caspar D. L. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys J. 1980 Oct;32(1):103–138. doi: 10.1016/S0006-3495(80)84929-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caspar D. L., Namba K. Switching in the self-assembly of tobacco mosaic virus. Adv Biophys. 1990;26:157–185. doi: 10.1016/0065-227x(90)90011-h. [DOI] [PubMed] [Google Scholar]
  6. Correia J. J., Shire S., Yphantis D. A., Schuster T. M. Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers. Biochemistry. 1985 Jun 18;24(13):3292–3297. doi: 10.1021/bi00334a033. [DOI] [PubMed] [Google Scholar]
  7. Durham A. C., Finch J. T., Klug A. States of aggregation of tobacco mosaic virus protein. Nat New Biol. 1971 Jan 13;229(2):37–42. doi: 10.1038/newbio229037a0. [DOI] [PubMed] [Google Scholar]
  8. Durham A. C. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. I. Sedimentation studies. J Mol Biol. 1972 Jun 20;67(2):289–305. doi: 10.1016/0022-2836(72)90242-2. [DOI] [PubMed] [Google Scholar]
  9. FRANKLIN R. E., COMMONER B. Abnormal protein associated with tobacco mosaic virus; x-ray diffraction by an abnormal protein (B8) associated with tobacco mosaic virus. Nature. 1955 Jun 18;175(4468):1076–1077. doi: 10.1038/1751076a0. [DOI] [PubMed] [Google Scholar]
  10. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  11. Mandelkow E., Holmes K. C., Gallwitz U. A new helical aggregate of tobacco mosaic virus protein. J Mol Biol. 1976 Apr 5;102(2):265–285. doi: 10.1016/s0022-2836(76)80053-8. [DOI] [PubMed] [Google Scholar]
  12. Mandelkow E., Stubbs G., Warren S. Structures of the helical aggregates of tobacco mosaic virus protein. J Mol Biol. 1981 Oct 25;152(2):375–386. doi: 10.1016/0022-2836(81)90248-5. [DOI] [PubMed] [Google Scholar]
  13. Namba K., Pattanayek R., Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol. 1989 Jul 20;208(2):307–325. doi: 10.1016/0022-2836(89)90391-4. [DOI] [PubMed] [Google Scholar]
  14. Pattanayek R., Stubbs G. Structure of the U2 strain of tobacco mosaic virus refined at 3.5 A resolution using X-ray fiber diffraction. J Mol Biol. 1992 Nov 20;228(2):516–528. doi: 10.1016/0022-2836(92)90839-c. [DOI] [PubMed] [Google Scholar]
  15. Raghavendra K., Adams M. L., Schuster T. M. Tobacco mosaic virus protein aggregates in solution: structural comparison of 20S aggregates with those near conditions for disk crystallization. Biochemistry. 1985 Jun 18;24(13):3298–3304. doi: 10.1021/bi00334a034. [DOI] [PubMed] [Google Scholar]
  16. Raghavendra K., Kelly J. A., Khairallah L., Schuster T. M. Structure and function of disk aggregates of the coat protein of tobacco mosaic virus. Biochemistry. 1988 Oct 4;27(20):7583–7588. doi: 10.1021/bi00420a002. [DOI] [PubMed] [Google Scholar]
  17. Raghavendra K., Salunke D. M., Caspar D. L., Schuster T. M. Disk aggregates of tobacco mosaic virus protein in solution: electron microscopy observations. Biochemistry. 1986 Oct 7;25(20):6276–6279. doi: 10.1021/bi00368a066. [DOI] [PubMed] [Google Scholar]
  18. Royer W. E., Jr, Pardanani A., Gibson Q. H., Peterson E. S., Friedman J. M. Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14526–14531. doi: 10.1073/pnas.93.25.14526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scheele R. B., Lauffer M. A. Acid-base titrations of tobacco mosaic virus and tobacco mosaic virus protein. Biochemistry. 1967 Oct;6(10):3076–3081. doi: 10.1021/bi00862a014. [DOI] [PubMed] [Google Scholar]
  20. Schuster T. M., Scheele R. B., Adams M. L., Shire S. J., Steckert J. J., Potschka M. Studies on the mechanism of assembly of tobacco mosaic virus. Biophys J. 1980 Oct;32(1):313–329. doi: 10.1016/S0006-3495(80)84959-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schuster T. M., Scheele R. B., Khairallah L. H. Mechanism of self-assembly of tobacco mosaic virus protein. I. Nucleation-controlled kinetics of polymerization. J Mol Biol. 1979 Feb 5;127(4):461–485. doi: 10.1016/0022-2836(79)90232-8. [DOI] [PubMed] [Google Scholar]
  22. Shire S. J., Steckert J. J., Schuster T. M. Mechanism of self-assembly of tobacco mosaic virus protein. II. Characterization of the metastable polymerization nucleus and the initial stages of helix formation. J Mol Biol. 1979 Feb 5;127(4):487–506. doi: 10.1016/0022-2836(79)90233-x. [DOI] [PubMed] [Google Scholar]
  23. Unwin P. N. Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. II. The influence of electron irradiation of the stain distribution. J Mol Biol. 1974 Aug 25;87(4):657–670. doi: 10.1016/0022-2836(74)90076-x. [DOI] [PubMed] [Google Scholar]
  24. Unwin P. N., Klug A. Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. I. Three-dimensional image reconstruction. J Mol Biol. 1974 Aug 25;87(4):641–656. doi: 10.1016/0022-2836(74)90075-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES