Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):645–654. doi: 10.1016/S0006-3495(98)77824-5

Birefringence of single and bundled microtubules.

R Oldenbourg 1, E D Salmon 1, P T Tran 1
PMCID: PMC1299418  PMID: 9449366

Abstract

We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

Full Text

The Full Text of this article is available as a PDF (626.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Allen N. S. Video-enhanced microscopy with a computer frame memory. J Microsc. 1983 Jan;129(Pt 1):3–17. doi: 10.1111/j.1365-2818.1983.tb04157.x. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Travis J. L., Allen N. S., Yilmaz H. Video-enhanced contrast polarization (AVEC-POL) microscopy: a new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motil. 1981;1(3):275–289. doi: 10.1002/cm.970010302. [DOI] [PubMed] [Google Scholar]
  3. Arimoto R., Murray J. M. Orientation-dependent visibility of long thin objects in polarization-based microscopy. Biophys J. 1996 Jun;70(6):2969–2980. doi: 10.1016/S0006-3495(96)79867-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell C. W., Fraser C., Sale W. S., Tang W. J., Gibbons I. R. Preparation and purification of dynein. Methods Cell Biol. 1982;24:373–397. doi: 10.1016/s0091-679x(08)60666-4. [DOI] [PubMed] [Google Scholar]
  5. Endow S. A., Kang S. J., Satterwhite L. L., Rose M. D., Skeen V. P., Salmon E. D. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 1994 Jun 1;13(11):2708–2713. doi: 10.1002/j.1460-2075.1994.tb06561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hard R., Allen R. D. Flow birefringence of microtubules and its relation to birefringence measurements in cells. Cell Motil. 1985;5(1):31–51. doi: 10.1002/cm.970050104. [DOI] [PubMed] [Google Scholar]
  7. INOUE S., HYDE W. L. Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J Biophys Biochem Cytol. 1957 Nov 25;3(6):831–838. doi: 10.1083/jcb.3.6.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. INOUE S. [Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells]. Chromosoma. 1953;5(5):487–500. doi: 10.1007/BF01271498. [DOI] [PubMed] [Google Scholar]
  9. Inoué S. Imaging of unresolved objects, superresolution, and precision of distance measurement with video microscopy. Methods Cell Biol. 1989;30:85–112. doi: 10.1016/s0091-679x(08)60976-0. [DOI] [PubMed] [Google Scholar]
  10. Inoué S. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J Cell Biol. 1981 May;89(2):346–356. doi: 10.1083/jcb.89.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KUBOTA H., INOUE S. [Diffraction images in the polarizing microscope]. J Opt Soc Am. 1959 Feb;49(2):191–198. doi: 10.1364/josa.49.000191. [DOI] [PubMed] [Google Scholar]
  12. Linck R. W., Amos L. A., Amos W. B. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol. 1985 Jan;100(1):126–135. doi: 10.1083/jcb.100.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oldenbourg R. A new view on polarization microscopy. Nature. 1996 Jun 27;381(6585):811–812. doi: 10.1038/381811a0. [DOI] [PubMed] [Google Scholar]
  14. Oldenbourg R. Analysis of edge birefringence. Biophys J. 1991 Sep;60(3):629–641. doi: 10.1016/S0006-3495(91)82092-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oldenbourg R., Mei G. New polarized light microscope with precision universal compensator. J Microsc. 1995 Nov;180(Pt 2):140–147. doi: 10.1111/j.1365-2818.1995.tb03669.x. [DOI] [PubMed] [Google Scholar]
  16. Oldenbourg R., Ruiz T. Birefringence of macromolecules. Wiener's theory revisited, with applications to DNA and tobacco mosaic virus. Biophys J. 1989 Jul;56(1):195–205. doi: 10.1016/S0006-3495(89)82664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sato H., Ellis G. W., Inoué S. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation. J Cell Biol. 1975 Dec;67(3):501–517. doi: 10.1083/jcb.67.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tran P., Salmon E. D., Oldenbourg R. Quantifying single and bundled microtubules with the polarized light microscope. Biol Bull. 1995 Oct-Nov;189(2):206–206. doi: 10.1086/BBLv189n2p206. [DOI] [PubMed] [Google Scholar]
  20. Voter W. A., Erickson H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J Biol Chem. 1984 Aug 25;259(16):10430–10438. [PubMed] [Google Scholar]
  21. Walker R. A., O'Brien E. T., Pryer N. K., Soboeiro M. F., Voter W. A., Erickson H. P., Salmon E. D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–1448. doi: 10.1083/jcb.107.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES