Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):669–677. doi: 10.1016/S0006-3495(98)77826-9

Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin).

M Adams 1, S Fraden 1
PMCID: PMC1299420  PMID: 9449368

Abstract

Aqueous suspensions of mixtures of the rodlike virus tobacco mosaic virus (TMV) with globular macromolecules such as polyethylene oxide (PEO) or bovine serum albumin (BSA) phase separate and exhibit rich and strikingly similar phase behavior. Isotropic, nematic, lamellar, and crystalline phases are observed as a function of the concentration of the constituents and ionic strength. The observed phase behavior is considered to arise from attractions between the two particles induced by the presence of BSA or PEO. For the TMV/BSA mixtures, the BSA adsorbs to the TMV and bridging of the BSA between TMV produces the attractions. For TMV/PEO mixtures, attractions are entropically driven via excluded volume effects known alternatively as the "depletion interaction" or "macromolecular crowding."

Full Text

The Full Text of this article is available as a PDF (445.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asherie N, Lomakin A, Benedek GB. Phase Diagram of Colloidal Solutions. Phys Rev Lett. 1996 Dec 2;77(23):4832–4835. doi: 10.1103/PhysRevLett.77.4832. [DOI] [PubMed] [Google Scholar]
  2. Cuneo P., Magri E., Verzola A., Grazi E. 'Macromolecular crowding' is a primary factor in the organization of the cytoskeleton. Biochem J. 1992 Jan 15;281(Pt 2):507–512. doi: 10.1042/bj2810507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fraden S, Maret G, Caspar DL. Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaic virus. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Oct;48(4):2816–2837. doi: 10.1103/physreve.48.2816. [DOI] [PubMed] [Google Scholar]
  4. Leberman R. The isolation of plant viruses by means of "simple" coacervates. Virology. 1966 Nov;30(3):341–347. doi: 10.1016/0042-6822(66)90112-7. [DOI] [PubMed] [Google Scholar]
  5. Millman B. M., Irving T. C., Nickel B. G., Loosley-Millman M. E. Interrod forces in aqueous gels of tobacco mosaic virus. Biophys J. 1984 Mar;45(3):551–556. doi: 10.1016/S0006-3495(84)84192-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Podgornik R., Strey H. H., Gawrisch K., Rau D. C., Rupprecht A., Parsegian V. A. Bond orientational order, molecular motion, and free energy of high-density DNA mesophases. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4261–4266. doi: 10.1073/pnas.93.9.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rosenbaum D, Zamora PC, Zukoski CF. Phase behavior of small attractive colloidal particles. Phys Rev Lett. 1996 Jan 1;76(1):150–153. doi: 10.1103/PhysRevLett.76.150. [DOI] [PubMed] [Google Scholar]
  8. Suzuki A., Yamazaki M., Ito T. Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry. 1989 Jul 25;28(15):6513–6518. doi: 10.1021/bi00441a052. [DOI] [PubMed] [Google Scholar]
  9. Walter H., Brooks D. E. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett. 1995 Mar 20;361(2-3):135–139. doi: 10.1016/0014-5793(95)00159-7. [DOI] [PubMed] [Google Scholar]
  10. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES