Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1110–1114. doi: 10.1016/S0006-3495(98)77829-4

Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution.

S Xu 1, L C Yu 1, M Schoenberg 1
PMCID: PMC1299463  PMID: 9512013

Abstract

Using x-ray diffraction and mechanical stiffness, the response of N-phenylmaleimide (NPM)-reacted cross-bridges to solutions containing different amounts of ATP and Mg2+ has been studied. In relaxing solution containing greater than millimolar amounts of ATP and Mg2+, NPM-treated muscle fibers give x-ray diffraction patterns and stiffness records, which are nearly indistinguishable from those of untreated relaxed fibers. In a solution devoid of added ATP, but with Mg2+ (rigor(+Mg) solution), the muscle fibers still give x-ray diffraction patterns and mechanical responses characteristic of relaxed muscle. The new finding reported here is that in a solution devoid of both ATP and Mg2+ (rigor(-Mg) solution containing EDTA with no added ATP), NPM-reacted cross-bridges do give rigor-like behavior. This is the first report that NPM-reacted cross-bridges, at least in the presence of EDTA, are capable of going into a strongly binding conformation.

Full Text

The Full Text of this article is available as a PDF (244.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett V. A., Ehrlich A., Schoenberg M. Formation of ATP-insensitive weakly-binding crossbridges in single rabbit psoas fibers by treatment with phenylmaleimide or para-phenylenedimaleimide. Biophys J. 1992 Feb;61(2):358–367. doi: 10.1016/S0006-3495(92)81842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke M., Knight P. J. Studies on the role of sulfhydryls in the myosin ATPase. Characterization of the site of modification by the bifunctional sulfhydryl reagent p-N,N'-phenylenedimaleimide. J Biol Chem. 1980 Sep 25;255(18):8385–8387. [PubMed] [Google Scholar]
  3. Chaen S., Shimada M., Sugi H. Evidence for cooperative interactions of myosin heads with thin filament in the force generation of vertebrate skeletal muscle fibers. J Biol Chem. 1986 Oct 15;261(29):13632–13636. [PubMed] [Google Scholar]
  4. Cooke R., Franks K. All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry. 1980 May 13;19(10):2265–2269. doi: 10.1021/bi00551a042. [DOI] [PubMed] [Google Scholar]
  5. Crowder M. S., Cooke R. The effect of myosin sulphydryl modification on the mechanics of fibre contraction. J Muscle Res Cell Motil. 1984 Apr;5(2):131–146. doi: 10.1007/BF00712152. [DOI] [PubMed] [Google Scholar]
  6. Diffee G. M., Patel J. R., Reinach F. C., Greaser M. L., Moss R. L. Altered kinetics of contraction in skeletal muscle fibers containing a mutant myosin regulatory light chain with reduced divalent cation binding. Biophys J. 1996 Jul;71(1):341–350. doi: 10.1016/S0006-3495(96)79231-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrlich A., Barnett V. A., Chen H. C., Schoenberg M. The site and stoichiometry of the N-phenylmaleimide reaction with myosin when weakly-binding crossbridges are formed in skinned rabbit psoas fibers. Biochim Biophys Acta. 1995 Nov 21;1232(1-2):13–20. doi: 10.1016/0005-2728(95)00094-6. [DOI] [PubMed] [Google Scholar]
  8. Greene L. E., Chalovich J. M., Eisenberg E. Effect of nucleotide on the binding of N,N'-p-phenylenedimaleimide-modified S-1 to unregulated and regulated actin. Biochemistry. 1986 Feb 11;25(3):704–709. doi: 10.1021/bi00351a030. [DOI] [PubMed] [Google Scholar]
  9. Huston E. E., Grammer J. C., Yount R. G. Flexibility of the myosin heavy chain: direct evidence that the region containing SH1 and SH2 can move 10 A under the influence of nucleotide binding. Biochemistry. 1988 Dec 13;27(25):8945–8952. doi: 10.1021/bi00425a011. [DOI] [PubMed] [Google Scholar]
  10. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  11. Reisler E., Burke M., Harrington W. F. Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase. Biochemistry. 1974 May 7;13(10):2014–2022. doi: 10.1021/bi00707a003. [DOI] [PubMed] [Google Scholar]
  12. Rizzino A. A., Barouch W. W., Eisenberg E., Moos C. Actin-heavy meromyosin biding. Determination of binding stoichiometry from adenosine triphosphatase kinetic measurements. Biochemistry. 1970 Jun 9;9(12):2402–2408. doi: 10.1021/bi00814a003. [DOI] [PubMed] [Google Scholar]
  13. Root D. D., Cheung P., Reisler E. Catalytic cooperativity induced by SH1 labeling of myosin filaments. Biochemistry. 1991 Jan 8;30(1):286–294. doi: 10.1021/bi00215a039. [DOI] [PubMed] [Google Scholar]
  14. Schoenberg M. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys J. 1988 Jul;54(1):135–148. doi: 10.1016/S0006-3495(88)82938-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Xie L., Li W. X., Barnett V. A., Schoenberg M. Graphical evaluation of alkylation of myosin's SH1 and SH2: the N-phenylmaleimide reaction. Biophys J. 1997 Feb;72(2 Pt 1):858–865. doi: 10.1016/s0006-3495(97)78720-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamaguchi M., Sekine T. Sulfhydryl groups involved in the active site of myosin A adenosine triphosphatase. I. Specific blocking of the SH group responsible for the inhibitory phase in "B phasic response" of the catalytic activity. J Biochem. 1966 Jan;59(1):24–33. doi: 10.1093/oxfordjournals.jbchem.a128254. [DOI] [PubMed] [Google Scholar]
  17. Zot H. G., Potter J. D. A structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils. J Biol Chem. 1982 Jul 10;257(13):7678–7683. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES