Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1135–1148. doi: 10.1016/S0006-3495(98)77831-2

Low-temperature electron transfer from cytochrome to the special pair in Rhodopseudomonas viridis: role of the L162 residue.

J M Ortega 1, B Dohse 1, D Oesterhelt 1, P Mathis 1
PMCID: PMC1299465  PMID: 9512015

Abstract

Electron transfer from the tetraheme cytochrome c to the special pair of bacteriochlorophylls (P) has been studied by flash absorption spectroscopy in reaction centers isolated from seven strains of the photosynthetic purple bacterium Rhodopseudomonas viridis, where the residue L162, located between the proximal heme c-559 and P, is Y (wild type), F, W, G, M, T, or L. Measurements were performed between 294 K and 8 K, under redox conditions in which the two high-potential hemes of the cytochrome were chemically reduced. At room temperature, the kinetics of P+ reduction include two phases in all of the strains: a dominant very fast phase (VF), and a minor fast phase (F). The VF phase has the following t(1/2): 90 ns (M), 130 ns (W), 135 ns (F), 189 ns (Y; wild type), 200 ns (G), 390 ns (L), and 430 ns (T). These data show that electron transfer is fast whatever the nature of the amino acid at position L162. The amplitudes of both phases decrease suddenly around 200 K in Y, F, and W. The effect of temperature on the extent of fast phases is different in mutants G, M, L, and T, in which electron transfer from c-559 to P+ takes place at cryogenic temperatures in a substantial fraction of the reaction centers (T, 48%; G, 38%; L, 23%, at 40 K; and M, 28%, at 60 K), producing a stable charge separated state. In these nonaromatic mutants the rate of VF electron transfer from cytochrome to P+ is nearly temperature-independent between 294 K and 8 K, remaining very fast at very low temperatures (123 ns at 60 K for M; 251 ns at 40 K for L; 190 ns at 8 K for G, and 458 ns at 8 K for T). In all cases, a decrease in amplitudes of the fast phases is paralleled by an increase in very slow reduction of P+, presumably by back-reaction with Q(A)-. The significance of these results is discussed in relation to electron transfer theories and to freezing at low temperatures of cytochrome structural reorganization.

Full Text

The Full Text of this article is available as a PDF (308.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alegria G., Dutton P. L. Langmuir-Blodgett monolayer films of the Rhodopseudomonas viridis reaction center: determination of the order of the hemes in the cytochrome c subunit. Biochim Biophys Acta. 1991 Mar 29;1057(2):258–272. doi: 10.1016/s0005-2728(05)80108-2. [DOI] [PubMed] [Google Scholar]
  2. Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
  3. Berghuis A. M., Guillemette J. G., McLendon G., Sherman F., Smith M., Brayer G. D. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c. J Mol Biol. 1994 Feb 25;236(3):786–799. doi: 10.1006/jmbi.1994.1189. [DOI] [PubMed] [Google Scholar]
  4. Clayton R. K., Clayton B. J. Molar extinction coefficients and other properties of an improved reaction center preparation from Rhodopseudomonas viridis. Biochim Biophys Acta. 1978 Mar 13;501(3):478–487. doi: 10.1016/0005-2728(78)90115-9. [DOI] [PubMed] [Google Scholar]
  5. DeVault D., Chance B. Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys J. 1966 Nov;6(6):825–847. doi: 10.1016/s0006-3495(66)86698-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeVault D., Parkes J. H., Chance B. Electron tunnelling in cytochromes. Nature. 1967 Aug 5;215(5101):642–644. doi: 10.1038/215642a0. [DOI] [PubMed] [Google Scholar]
  7. Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
  8. Doster W., Bachleitner A., Dunau R., Hiebl M., Lüscher E. Thermal properties of water in myoglobin crystals and solutions at subzero temperatures. Biophys J. 1986 Aug;50(2):213–219. doi: 10.1016/S0006-3495(86)83455-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dracheva S. M., Drachev L. A., Konstantinov A. A., Semenov AYu, Skulachev V. P., Arutjunjan A. M., Shuvalov V. A., Zaberezhnaya S. M. Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis. Eur J Biochem. 1988 Jan 15;171(1-2):253–264. doi: 10.1111/j.1432-1033.1988.tb13784.x. [DOI] [PubMed] [Google Scholar]
  10. Drepper F., Dorlet P., Mathis P. Cross-linked electron transfer complex between cytochrome c2 and the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry. 1997 Feb 11;36(6):1418–1427. doi: 10.1021/bi961350u. [DOI] [PubMed] [Google Scholar]
  11. Farchaus J. W., Wachtveitl J., Mathis P., Oesterhelt D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry. 1993 Oct 12;32(40):10885–10893. doi: 10.1021/bi00091a044. [DOI] [PubMed] [Google Scholar]
  12. Hervás M., Navarro J. A., Díaz A., Bottin H., De la Rosa M. A. Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry. 1995 Sep 12;34(36):11321–11326. doi: 10.1021/bi00036a004. [DOI] [PubMed] [Google Scholar]
  13. Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kihara T., McCray J. A. Water and cytochrome oxidation-reduction reactions. Biochim Biophys Acta. 1973 Feb 22;292(2):297–309. doi: 10.1016/0005-2728(73)90037-6. [DOI] [PubMed] [Google Scholar]
  15. Lin X., Williams J. C., Allen J. P., Mathis P. Relationship between rate and free energy difference for electron transfer from cytochrome c2 to the reaction center in Rhodobacter sphaeroides. Biochemistry. 1994 Nov 22;33(46):13517–13523. doi: 10.1021/bi00250a002. [DOI] [PubMed] [Google Scholar]
  16. Mathis P., Ortega J. M., Venturoli G. Interaction between cytochrome c and the photosynthetic reaction center of purple bacteria: behaviour at low temperature. Biochimie. 1994;76(6):569–579. doi: 10.1016/0300-9084(94)90181-3. [DOI] [PubMed] [Google Scholar]
  17. Michel H., Epp O., Deisenhofer J. Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. 1986 Oct;5(10):2445–2451. doi: 10.1002/j.1460-2075.1986.tb04520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michel H., Weyer K. A., Gruenberg H., Dunger I., Oesterhelt D., Lottspeich F. The 'light' and 'medium' subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J. 1986 Jun;5(6):1149–1158. doi: 10.1002/j.1460-2075.1986.tb04340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
  20. Ortega J. M., Dohse B., Oesterhelt D., Mathis P. Very fast electron transfer from cytochrome to the bacterial photosynthetic reaction center at low temperature. FEBS Lett. 1997 Jan 20;401(2-3):153–157. doi: 10.1016/s0014-5793(96)01440-8. [DOI] [PubMed] [Google Scholar]
  21. Ortega J. M., Mathis P. Effect of temperature on the kinetics of electron transfer from the tetraheme cytochrome to the primary donor in Rhodopseudomonas viridis. FEBS Lett. 1992 Apr 13;301(1):45–48. doi: 10.1016/0014-5793(92)80207-w. [DOI] [PubMed] [Google Scholar]
  22. Ortega J. M., Mathis P. Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochemistry. 1993 Feb 2;32(4):1141–1151. doi: 10.1021/bi00055a020. [DOI] [PubMed] [Google Scholar]
  23. Ortega J. M., Mathis P., Williams J. C., Allen J. P. Temperature dependence of the reorganization energy for charge recombination in the reaction center from Rhodobacter sphaeroides. Biochemistry. 1996 Mar 19;35(11):3354–3361. doi: 10.1021/bi952882y. [DOI] [PubMed] [Google Scholar]
  24. Pethig R. Protein-water interactions determined by dielectric methods. Annu Rev Phys Chem. 1992;43:177–205. doi: 10.1146/annurev.pc.43.100192.001141. [DOI] [PubMed] [Google Scholar]
  25. Qi P. X., Urbauer J. L., Fuentes E. J., Leopold M. F., Wand A. J. Structural water in oxidized and reduced horse heart cytochrome c. Nat Struct Biol. 1994 Jun;1(6):378–382. doi: 10.1038/nsb0694-378. [DOI] [PubMed] [Google Scholar]
  26. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  27. Shiozawa J. A., Lottspeich F., Oesterhelt D., Feick R. The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem. 1989 Mar 1;180(1):75–84. doi: 10.1111/j.1432-1033.1989.tb14617.x. [DOI] [PubMed] [Google Scholar]
  28. Shopes R. J., Wraight C. A. Charge recombination from the P+QA- state in reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta. 1987 Oct 7;893(3):409–425. doi: 10.1016/0005-2728(87)90093-4. [DOI] [PubMed] [Google Scholar]
  29. Venturoli G., Mallardi A., Mathis P. Electron transfer from cytochrome c2 to the primary donor of Rhodobacter sphaeroides reaction centers. A temperature dependence study. Biochemistry. 1993 Dec 7;32(48):13245–13253. doi: 10.1021/bi00211a037. [DOI] [PubMed] [Google Scholar]
  30. Wachtveitl J., Farchaus J. W., Mathis P., Oesterhelt D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 2. Quantitative kinetic analysis. Biochemistry. 1993 Oct 12;32(40):10894–10904. doi: 10.1021/bi00091a045. [DOI] [PubMed] [Google Scholar]
  31. Weyer K. A., Lottspeich F., Gruenberg H., Lang F., Oesterhelt D., Michel H. Amino acid sequence of the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 1987 Aug;6(8):2197–2202. doi: 10.1002/j.1460-2075.1987.tb02490.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williams J. C., Steiner L. A., Ogden R. C., Simon M. I., Feher G. Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6505–6509. doi: 10.1073/pnas.80.21.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell. 1984 Jul;37(3):949–957. doi: 10.1016/0092-8674(84)90429-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES