Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1286–1295. doi: 10.1016/S0006-3495(98)77842-7

Asymmetrical distribution of Ca-activated Cl channels in Xenopus oocytes.

K Machaca 1, H C Hartzell 1
PMCID: PMC1299476  PMID: 9512026

Abstract

Xenopus oocytes are a popular model system for studying Ca signaling. They endogenously express two kinds of Ca-activated Cl currents, I(Cl-1), and I(Cl-2). I(Cl-1) is activated by Ca released from internal stores and, with appropriate voltage protocols, by Ca influx. In contrast, I(Cl-2) activation is dependent on Ca influx. We are interested in understanding how these two different Cl channels are activated differently by Ca from different sources. One could hypothesize that these channels are activated differently because they are differentially localized near the corresponding Ca source. As an initial investigation of this hypothesis, we examined the distribution of I(Cl-1) and I(Cl-2) channels in the oocyte. We conclude that both I(Cl-1) and (Cl-2) channels are primarily localized to the animal hemisphere of the oocyte, but that capacitative Ca influx occurs over the entire oocyte membrane. Evidence supporting this view includes the following observations: 1) Injection of IP3 into the animal hemisphere produced larger and faster I(Cl-1) responses than injection into the vegetal hemisphere. 2) Exposure of the animal hemisphere to Cl-free solution almost completely abolished I(Cl-1) produced by IP3-induced release of Ca from internal stores or by capacitative Ca entry. 3) Loose macropatch recording showed that both I(Cl-1) and I(Cl-2) currents were approximately four times and approximately three times, respectively, more dense in the animal than in the vegetal hemisphere. 4) Confocal imaging of oocytes loaded with fluorescent Ca-sensitive dyes showed that the time course of activation of I(Cl-1) corresponded to the appearance of the wave of Ca release at the animal pole. 5) Ca release and Ca influx, although twofold higher in the animal pole, were evident over the entire oocyte.

Full Text

The Full Text of this article is available as a PDF (140.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes. J Physiol. 1988 Sep;403:589–599. doi: 10.1113/jphysiol.1988.sp017266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brachet J. An old enigma: the gray crescent of amphibian eggs. Curr Top Dev Biol. 1977;11:133–186. [PubMed] [Google Scholar]
  4. Busa W. B., Ferguson J. E., Joseph S. K., Williamson J. R., Nuccitelli R. Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J Cell Biol. 1985 Aug;101(2):677–682. doi: 10.1083/jcb.101.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Callamaras N., Parker I. Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+. Cell Calcium. 1994 Jan;15(1):66–78. doi: 10.1016/0143-4160(94)90105-8. [DOI] [PubMed] [Google Scholar]
  6. Camacho P., Lechleiter J. D. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell. 1995 Sep 8;82(5):765–771. doi: 10.1016/0092-8674(95)90473-5. [DOI] [PubMed] [Google Scholar]
  7. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  8. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  9. DeLisle S., Welsh M. J. Inositol trisphosphate is required for the propagation of calcium waves in Xenopus oocytes. J Biol Chem. 1992 Apr 25;267(12):7963–7966. [PubMed] [Google Scholar]
  10. Delisle S. The four dimensions of calcium signalling in Xenopus oocytes. Cell Calcium. 1991 Feb-Mar;12(2-3):217–227. doi: 10.1016/0143-4160(91)90022-7. [DOI] [PubMed] [Google Scholar]
  11. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  12. Ghosh A., Greenberg M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995 Apr 14;268(5208):239–247. doi: 10.1126/science.7716515. [DOI] [PubMed] [Google Scholar]
  13. Girard S., Clapham D. Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science. 1993 Apr 9;260(5105):229–232. doi: 10.1126/science.8385801. [DOI] [PubMed] [Google Scholar]
  14. Gomez-Hernandez J. M., Stühmer W., Parekh A. B. Calcium dependence and distribution of calcium-activated chloride channels in Xenopus oocytes. J Physiol. 1997 Aug 1;502(Pt 3):569–574. doi: 10.1111/j.1469-7793.1997.569bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hartzell H. C. Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx. J Gen Physiol. 1996 Sep;108(3):157–175. doi: 10.1085/jgp.108.3.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hartzell H. C., Machaca K., Hirayama Y. Effects of adenophostin-A and inositol-1,4,5-trisphosphate on Cl- currents in Xenopus laevis oocytes. Mol Pharmacol. 1997 Apr;51(4):683–692. doi: 10.1124/mol.51.4.683. [DOI] [PubMed] [Google Scholar]
  17. Lechleiter J. D., Clapham D. E. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell. 1992 Apr 17;69(2):283–294. doi: 10.1016/0092-8674(92)90409-6. [DOI] [PubMed] [Google Scholar]
  18. Lenzi D., Roberts W. M. Calcium signalling in hair cells: multiple roles in a compact cell. Curr Opin Neurobiol. 1994 Aug;4(4):496–502. doi: 10.1016/0959-4388(94)90049-3. [DOI] [PubMed] [Google Scholar]
  19. Lupu-Meiri M., Shapira H., Oron Y. Hemispheric asymmetry of rapid chloride responses to inositol trisphosphate and calcium in Xenopus oocytes. FEBS Lett. 1988 Nov 21;240(1-2):83–87. doi: 10.1016/0014-5793(88)80344-2. [DOI] [PubMed] [Google Scholar]
  20. Miledi R., Parker I. Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol. 1984 Dec;357:173–183. doi: 10.1113/jphysiol.1984.sp015495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moody W. J., Simoncini L., Coombs J. L., Spruce A. E., Villaz M. Development of ion channels in early embryos. J Neurobiol. 1991 Oct;22(7):674–684. doi: 10.1002/neu.480220703. [DOI] [PubMed] [Google Scholar]
  22. Nieuwkoop P. D. Origin and establishment of embryonic polar axes in amphibian development. Curr Top Dev Biol. 1977;11:115–132. doi: 10.1016/s0070-2153(08)60744-9. [DOI] [PubMed] [Google Scholar]
  23. Parekh A. B. Interaction between capacitative Ca2+ influx and Ca2+-dependent Cl- currents in Xenopus oocytes. Pflugers Arch. 1995 Oct;430(6):954–963. doi: 10.1007/BF01837409. [DOI] [PubMed] [Google Scholar]
  24. Parker I., Choi J., Yao Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium. 1996 Aug;20(2):105–121. doi: 10.1016/s0143-4160(96)90100-1. [DOI] [PubMed] [Google Scholar]
  25. Parker I., Miledi R. Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1987 Jun 22;231(1262):27–36. doi: 10.1098/rspb.1987.0033. [DOI] [PubMed] [Google Scholar]
  26. Parker I., Yao Y. Relation between intracellular Ca2+ signals and Ca(2+)-activated Cl- current in Xenopus oocytes. Cell Calcium. 1994 Apr;15(4):276–288. doi: 10.1016/0143-4160(94)90067-1. [DOI] [PubMed] [Google Scholar]
  27. Peter A. B., Schittny J. C., Niggli V., Reuter H., Sigel E. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs. J Cell Biol. 1991 Aug;114(3):455–464. doi: 10.1083/jcb.114.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  29. Quarmby L. M., Hartzell H. C. Dissection of eukaryotic transmembrane signalling using Chlamydomonas. Trends Pharmacol Sci. 1994 Sep;15(9):343–349. doi: 10.1016/0165-6147(94)90029-9. [DOI] [PubMed] [Google Scholar]
  30. Robinson K. R. Electrical currents through full-grown and maturing Xenopus oocytes. Proc Natl Acad Sci U S A. 1979 Feb;76(2):837–841. doi: 10.1073/pnas.76.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  32. Yao Y., Parker I. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J Physiol. 1994 Apr 1;476(1):17–28. [PMC free article] [PubMed] [Google Scholar]
  33. Yao Y., Parker I. Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores. J Physiol. 1993 Aug;468:275–295. doi: 10.1113/jphysiol.1993.sp019771. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES