Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1296–1304. doi: 10.1016/S0006-3495(98)77843-9

The interactions of ATP, ADP, and inorganic phosphate with the sheep cardiac ryanodine receptor.

H Kermode 1, A J Williams 1, R Sitsapesan 1
PMCID: PMC1299477  PMID: 9512027

Abstract

The effects of ATP, ADP, and inorganic phosphate (Pi) on the gating of native sheep cardiac ryanodine receptor channels incorporated into planar phospholipid bilayers were investigated. We demonstrate that ATP and ADP can activate the channel by Ca2+-dependent and Ca2+-independent mechanisms. ATP and ADP appear to compete for the same site/s on the cardiac ryanodine receptor, and in the presence of cytosolic Ca2+ both agents tend to inactivate the channel at supramaximal concentrations. Our results reveal that ATP not only has a greater affinity for the adenine nucleotide site/s than ADP, but also has a greater efficacy. The EC50 value for channel activation is approximately 0.2 mM for ATP compared to 1.2 mM for ADP. Most interesting is the fact that, even in the presence of cytosolic Ca2+, ADP cannot activate the channel much above an open probability (Po) of 0.5, and therefore acts as a partial agonist at the adenine nucleotide binding site on the channel. We demonstrate that Pi also increases Po in a concentration and Ca2+-dependent manner, but unlike ATP and ADP, has no effect in the absence of activating cytosolic [Ca2+]. We demonstrate that Pi does not interact with the adenine nucleotide site/s but binds to a distinct domain on the channel to produce an increase in Po.

Full Text

The Full Text of this article is available as a PDF (164.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  2. Ashley R. H., Williams A. J. Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J Gen Physiol. 1990 May;95(5):981–1005. doi: 10.1085/jgp.95.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blatz A. L., Magleby K. L. Correcting single channel data for missed events. Biophys J. 1986 May;49(5):967–980. doi: 10.1016/S0006-3495(86)83725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fruen B. R., Kane P. K., Mickelson J. R., Louis C. F. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors. Biophys J. 1996 Nov;71(5):2522–2530. doi: 10.1016/S0006-3495(96)79445-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fruen B. R., Mickelson J. R., Roghair T. J., Cheng H. L., Louis C. F. Anions that potentiate excitation-contraction coupling may mimic effect of phosphate on Ca2+ release channel. Am J Physiol. 1994 Jun;266(6 Pt 1):C1729–C1735. doi: 10.1152/ajpcell.1994.266.6.C1729. [DOI] [PubMed] [Google Scholar]
  7. Fruen B. R., Mickelson J. R., Shomer N. H., Roghair T. J., Louis C. F. Regulation of the sarcoplasmic reticulum ryanodine receptor by inorganic phosphate. J Biol Chem. 1994 Jan 7;269(1):192–198. [PubMed] [Google Scholar]
  8. Herrmann-Frank A., Varsányi M. Enhancement of Ca2+ release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. FEBS Lett. 1993 Oct 18;332(3):237–242. doi: 10.1016/0014-5793(93)80640-g. [DOI] [PubMed] [Google Scholar]
  9. Hohl C. M., Garleb A. A., Altschuld R. A. Effects of simulated ischemia and reperfusion on the sarcoplasmic reticulum of digitonin-lysed cardiomyocytes. Circ Res. 1992 Apr;70(4):716–723. doi: 10.1161/01.res.70.4.716. [DOI] [PubMed] [Google Scholar]
  10. McGarry S. J., Williams A. J. Adenosine discriminates between the caffeine and adenine nucleotide sites on the sheep cardiac sarcoplasmic reticulum calcium-release channel. J Membr Biol. 1994 Jan;137(2):169–177. doi: 10.1007/BF00233486. [DOI] [PubMed] [Google Scholar]
  11. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem. 1984 Feb 25;259(4):2365–2374. [PubMed] [Google Scholar]
  12. Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
  13. Meissner G., Henderson J. S. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987 Mar 5;262(7):3065–3073. [PubMed] [Google Scholar]
  14. Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci. 1995 Nov;16(11):386–391. doi: 10.1016/s0165-6147(00)89080-x. [DOI] [PubMed] [Google Scholar]
  15. Sitsapesan R., Montgomery R. A., MacLeod K. T., Williams A. J. Sheep cardiac sarcoplasmic reticulum calcium-release channels: modification of conductance and gating by temperature. J Physiol. 1991 Mar;434:469–488. doi: 10.1113/jphysiol.1991.sp018481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sitsapesan R., Williams A. J. Gating of the native and purified cardiac SR Ca(2+)-release channel with monovalent cations as permeant species. Biophys J. 1994 Oct;67(4):1484–1494. doi: 10.1016/S0006-3495(94)80622-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sitsapesan R., Williams A. J. The gating of the sheep skeletal sarcoplasmic reticulum Ca(2+)-release channel is regulated by luminal Ca2+. J Membr Biol. 1995 Jul;146(2):133–144. doi: 10.1007/BF00238004. [DOI] [PubMed] [Google Scholar]
  18. Smith G. L., Steele D. S. Inorganic phosphate decreases the Ca2+ content of the sarcoplasmic reticulum in saponin-treated rat cardiac trabeculae. J Physiol. 1992 Dec;458:457–473. doi: 10.1113/jphysiol.1992.sp019427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
  20. Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  22. Steele D. S., McAinsh A. M., Smith G. L. Comparative effects of inorganic phosphate and oxalate on uptake and release of Ca2+ by the sarcoplasmic reticulum in saponin skinned rat cardiac trabeculae. J Physiol. 1996 Feb 1;490(Pt 3):565–576. doi: 10.1113/jphysiol.1996.sp021167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steele D. S., McAinsh A. M., Smith G. L. Effects of creatine phosphate and inorganic phosphate on the sarcoplasmic reticulum of saponin-treated rat heart. J Physiol. 1995 Feb 15;483(Pt 1):155–166. doi: 10.1113/jphysiol.1995.sp020575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xiang J. Z., Kentish J. C. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Cardiovasc Res. 1995 Mar;29(3):391–400. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES