Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1346–1357. doi: 10.1016/S0006-3495(98)77847-6

Vectorially oriented monolayers of the cytochrome c/cytochrome oxidase bimolecular complex.

A M Edwards 1, J K Blasie 1, J C Bean 1
PMCID: PMC1299481  PMID: 9512031

Abstract

Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cysteine 102 of the yeast cytochrome c. The bimolecular complex was formed by further incubating these cytochrome c monolayers in detergent-solubilized cytochrome oxidase. The sequential formation of such monolayers and the vectorially oriented nature of the cytochrome oxidase was studied via meridional x-ray diffraction, which directly provided electron density profiles of the protein(s) along the axis normal to the substrate plane. The nature of these profiles is consistent with previous work performed on vectorially oriented monolayers of either cytochrome c or cytochrome oxidase alone. Furthermore, optical spectroscopy has indicated that the rate of binding of cytochrome oxidase to the cytochrome c monolayer is an order of magnitude faster than the binding of cytochrome oxidase to an amine-terminated surface that was meant to mimic the ring of lysine residues around the heme edge of cytochrome c, which are known to be involved in the binding of this protein to cytochrome oxidase.

Full Text

The Full Text of this article is available as a PDF (132.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asturias F. J., Fischetti R. F., Blasie J. K. Changes in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+ ATPase enzyme in the presence of terbium: a time-resolved x-ray diffraction study. Biophys J. 1994 May;66(5):1653–1664. doi: 10.1016/S0006-3495(94)80957-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chupa J. A., McCauley J. P., Jr, Strongin R. M., Smith A. B., 3rd, Blasie J. K., Peticolas L. J., Bean J. C. Vectorially oriented membrane protein monolayers: profile structures via x-ray interferometry/holography. Biophys J. 1994 Jul;67(1):336–348. doi: 10.1016/S0006-3495(94)80486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickinson L. C., Chien J. C. Cobalt-cytochrome c. I. Preparation, properties, and enzymic activity. Biochemistry. 1975 Aug 12;14(16):3526–3534. doi: 10.1021/bi00687a003. [DOI] [PubMed] [Google Scholar]
  4. Frey T. G., Murray J. M. Electron microscopy of cytochrome c oxidase crystals. Monomer-dimer relationship and cytochrome c binding site. J Mol Biol. 1994 Apr 1;237(3):275–297. doi: 10.1006/jmbi.1994.1231. [DOI] [PubMed] [Google Scholar]
  5. Malatesta F., Antonini G., Nicoletti F., Giuffrè A., D'Itri E., Sarti P., Brunori M. Probing the high-affinity site of beef heart cytochrome c oxidase by cross-linking. Biochem J. 1996 May 1;315(Pt 3):909–916. doi: 10.1042/bj3150909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nitz V, V, Tolan M, Schlomka J, Seeck OH, Stettner J, Press W, Stelzle M, Sackmann E. Correlations in the interface structure of Langmuir-Blodgett films observed by x-ray scattering. Phys Rev B Condens Matter. 1996 Aug 15;54(7):5038–5050. doi: 10.1103/physrevb.54.5038. [DOI] [PubMed] [Google Scholar]
  7. Pachence J. M., Amador S., Maniara G., Vanderkooi J., Dutton P. L., Blasie J. K. Orientation and lateral mobility of cytochrome c on the surface of ultrathin lipid multilayer films. Biophys J. 1990 Aug;58(2):379–389. doi: 10.1016/S0006-3495(90)82384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pachence J. M., Fischetti R. F., Blasie J. K. Location of the heme-Fe atoms within the profile structure of a monolayer of cytochrome c bound to the surface of an ultrathin lipid multilayer film. Biophys J. 1989 Aug;56(2):327–337. doi: 10.1016/S0006-3495(89)82679-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Prokop L. A., Stongin R. M., Smith A. B., 3rd, Blasie J. K., Peticolas L. J., Bean J. C. Vectorially oriented monolayers of detergent-solubilized Ca(2+) -ATPase from sarcoplasmic reticulum. Biophys J. 1996 May;70(5):2131–2143. doi: 10.1016/S0006-3495(96)79779-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
  11. Schlomka J, Tolan M, Schwalowsky L, Seeck OH, Stettner J, Press W. X-ray diffraction from Si/Ge layers: Diffuse scattering in the region of total external reflection. Phys Rev B Condens Matter. 1995 Jan 15;51(4):2311–2321. doi: 10.1103/physrevb.51.2311. [DOI] [PubMed] [Google Scholar]
  12. Skita V, V, Filipkowski M, Garito AF, Blasie JK. Profile structures of very thin multilayers by x-ray diffraction using direct and refinement methods of analysis. Phys Rev B Condens Matter. 1986 Oct 15;34(8):5826–5837. doi: 10.1103/physrevb.34.5826. [DOI] [PubMed] [Google Scholar]
  13. Stroud R. M., Agard D. A. Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophys J. 1979 Mar;25(3):495–512. doi: 10.1016/S0006-3495(79)85319-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tobias D. J., Mar W., Blasie J. K., Klein M. L. Molecular dynamics simulations of a protein on hydrophobic and hydrophilic surfaces. Biophys J. 1996 Dec;71(6):2933–2941. doi: 10.1016/S0006-3495(96)79497-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  16. Valpuesta J. M., Henderson R., Frey T. G. Electron cryo-microscopic analysis of crystalline cytochrome oxidase. J Mol Biol. 1990 Jul 5;214(1):237–251. doi: 10.1016/0022-2836(90)90158-I. [DOI] [PubMed] [Google Scholar]
  17. YONETANI T. Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J Biol Chem. 1960 Mar;235:845–852. [PubMed] [Google Scholar]
  18. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  19. Zaslavsky D. L., Smirnova I. A., Siletsky S. A., Kaulen A. D., Millett F., Konstantinov A. A. Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor. FEBS Lett. 1995 Feb 6;359(1):27–30. doi: 10.1016/0014-5793(94)01443-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES