Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1371–1379. doi: 10.1016/S0006-3495(98)77849-X

Hydration of polyethylene glycol-grafted liposomes.

O Tirosh 1, Y Barenholz 1, J Katzhendler 1, A Priev 1
PMCID: PMC1299483  PMID: 9512033

Abstract

This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase of the samples decrease. This reflects the increase in hydration of the lipid headgroup region (up to five additional water molecules per lipid molecule for 12 mol % PEG-lipid) and the weakening of the bilayer packing due to the lateral repulsion of PEG chains.

Full Text

The Full Text of this article is available as a PDF (175.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
  2. Arnold K., Zschoernig O., Barthel D., Herold W. Exclusion of poly(ethylene glycol) from liposome surfaces. Biochim Biophys Acta. 1990 Mar;1022(3):303–310. doi: 10.1016/0005-2736(90)90278-v. [DOI] [PubMed] [Google Scholar]
  3. Baekmark T. R., Pedersen S., Jørgensen K., Mouritsen O. G. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine. Biophys J. 1997 Sep;73(3):1479–1491. doi: 10.1016/S0006-3495(97)78180-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  5. Bhat R., Timasheff S. N. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992 Sep;1(9):1133–1143. doi: 10.1002/pro.5560010907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blume G., Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta. 1993 Mar 14;1146(2):157–168. doi: 10.1016/0005-2736(93)90351-y. [DOI] [PubMed] [Google Scholar]
  7. Buckin V. A., Kankiya B. I., Bulichov N. V., Lebedev A. V., Gukovsky IYa, Chuprina V. P., Sarvazyan A. P., Williams A. R. Measurement of anomalously high hydration of (dA)n.(dT)n double helices in dilute solution. Nature. 1989 Jul 27;340(6231):321–322. doi: 10.1038/340321a0. [DOI] [PubMed] [Google Scholar]
  8. Bukin V. A., Sarvazian A. P., Pasechnik V. I. Issledovanie vezikuliarnykh lipidnykh membran ul'trazvukovym metodom. Biofizika. 1979 Jan-Feb;24(1):61–66. [PubMed] [Google Scholar]
  9. Chalikian T. V., Sarvazyan A. P., Plum G. E., Breslauer K. J. Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 degrees C. Biochemistry. 1994 Mar 8;33(9):2394–2401. doi: 10.1021/bi00175a007. [DOI] [PubMed] [Google Scholar]
  10. Colotto A., Kharakoz D. P., Lohner K., Laggner P. Ultrasonic study of melittin effects on phospholipid model membranes. Biophys J. 1993 Dec;65(6):2360–2367. doi: 10.1016/S0006-3495(93)81298-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eggers F., Funck T. Ultrasonic measurements with milliliter liquid samples in the 0.5-100 MHz range. Rev Sci Instrum. 1973 Aug;44(8):969–977. doi: 10.1063/1.1686339. [DOI] [PubMed] [Google Scholar]
  12. Jordan C. F., Lerman L. S., Venable J. H. Structure and circular dichroism of DNA in concentrated polymer solutions. Nat New Biol. 1972 Mar 22;236(64):67–70. doi: 10.1038/newbio236067a0. [DOI] [PubMed] [Google Scholar]
  13. Kenworthy A. K., Hristova K., Needham D., McIntosh T. J. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1921–1936. doi: 10.1016/S0006-3495(95)80369-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kenworthy A. K., Simon S. A., McIntosh T. J. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1903–1920. doi: 10.1016/S0006-3495(95)80368-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kharakoz D. P., Sarvazyan A. P. Hydrational and intrinsic compressibilities of globular proteins. Biopolymers. 1993 Jan;33(1):11–26. doi: 10.1002/bip.360330103. [DOI] [PubMed] [Google Scholar]
  16. Kharakoz D. P. Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15-55 degrees C. Biophys Chem. 1989 Oct;34(2):115–125. doi: 10.1016/0301-4622(89)80049-3. [DOI] [PubMed] [Google Scholar]
  17. Kiyosawa K. Volumetric properties of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol and mannitol) in relation to their membrane permeability: group additivity and estimation of the maximum radius of their molecules. Biochim Biophys Acta. 1991 May 7;1064(2):251–255. doi: 10.1016/0005-2736(91)90309-v. [DOI] [PubMed] [Google Scholar]
  18. Kuhl T. L., Leckband D. E., Lasic D. D., Israelachvili J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J. 1994 May;66(5):1479–1488. doi: 10.1016/S0006-3495(94)80938-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lasic D. D. Doxorubicin in sterically stabilized liposomes. Nature. 1996 Apr 11;380(6574):561–562. doi: 10.1038/380561a0. [DOI] [PubMed] [Google Scholar]
  20. Lehtonen J. Y., Kinnunen P. K. Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys J. 1994 Jun;66(6):1981–1990. doi: 10.1016/S0006-3495(94)80991-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lehtonen J. Y., Kinnunen P. K. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys J. 1995 Feb;68(2):525–535. doi: 10.1016/S0006-3495(95)80214-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lichtenberg D., Barenholz Y. Liposomes: preparation, characterization, and preservation. Methods Biochem Anal. 1988;33:337–462. doi: 10.1002/9780470110546.ch7. [DOI] [PubMed] [Google Scholar]
  23. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  24. Mitaku S., Aruga S. Effect of calcium ion on the mechanical properties of lipid bilayer membrane. Biorheology. 1982;19(1/2):185–196. doi: 10.3233/bir-1982-191-221. [DOI] [PubMed] [Google Scholar]
  25. Mitaku S., Jippo T., Kataoka R. Thermodynamic properties of the lipid bilayer transition. Pseudocritical phenomena. Biophys J. 1983 May;42(2):137–144. doi: 10.1016/S0006-3495(83)84379-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Needham D., McIntosh T. J., Lasic D. D. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta. 1992 Jul 8;1108(1):40–48. doi: 10.1016/0005-2736(92)90112-y. [DOI] [PubMed] [Google Scholar]
  27. Oliveira A. C., Gaspar L. P., Da Poian A. T., Silva J. L. Arc repressor will not denature under pressure in the absence of water. J Mol Biol. 1994 Jul 15;240(3):184–187. doi: 10.1006/jmbi.1994.1433. [DOI] [PubMed] [Google Scholar]
  28. Priev A. I., Sarvazian A. P., Dzantiev B. B., Zherdev A. V., Cherednikova T. V. Izmenenie adiabaticheskoi szhimaemosti mono- i poliklonal'nykh antitel pri vzaimodeistvii s antigenami. Mol Biol (Mosk) 1990 May-Jun;24(3):629–637. [PubMed] [Google Scholar]
  29. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  30. Sarvazyan A. P., Chalikian T. V. Theoretical analysis of an ultrasonic interferometer for precise measurements at high pressures. Ultrasonics. 1991 Mar;29(2):119–124. doi: 10.1016/0041-624x(91)90040-f. [DOI] [PubMed] [Google Scholar]
  31. Sarvazyan A. P. Ultrasonic velocimetry of biological compounds. Annu Rev Biophys Biophys Chem. 1991;20:321–342. doi: 10.1146/annurev.bb.20.060191.001541. [DOI] [PubMed] [Google Scholar]
  32. Tirosh O., Kohen R., Katzhendler J., Alon A., Barenholz Y. Oxidative stress effect on the integrity of lipid bilayers is modulated by cholesterol level of bilayers. Chem Phys Lipids. 1997 May 30;87(1):17–22. doi: 10.1016/s0009-3084(97)00019-4. [DOI] [PubMed] [Google Scholar]
  33. Torchilin V. P., Omelyanenko V. G., Papisov M. I., Bogdanov A. A., Jr, Trubetskoy V. S., Herron J. N., Gentry C. A. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994 Oct 12;1195(1):11–20. doi: 10.1016/0005-2736(94)90003-5. [DOI] [PubMed] [Google Scholar]
  34. Ulrich A. S., Sami M., Watts A. Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta. 1994 Apr 20;1191(1):225–230. doi: 10.1016/0005-2736(94)90253-4. [DOI] [PubMed] [Google Scholar]
  35. Volke F., Eisenblätter S., Galle J., Klose G. Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids. 1994 Apr 19;70(2):121–131. doi: 10.1016/0009-3084(94)90080-9. [DOI] [PubMed] [Google Scholar]
  36. Woodle M. C. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993 Sep;64(1-3):249–262. doi: 10.1016/0009-3084(93)90069-f. [DOI] [PubMed] [Google Scholar]
  37. Zamyatnin A. A. Amino acid, peptide, and protein volume in solution. Annu Rev Biophys Bioeng. 1984;13:145–165. doi: 10.1146/annurev.bb.13.060184.001045. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES