Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1380–1387. doi: 10.1016/S0006-3495(98)77850-6

Interaction of gangliosides with proteins depending on oligosaccharide chain and protein surface modification.

M Hirai 1, H Iwase 1, S Arai 1, T Takizawa 1, K Hayashi 1
PMCID: PMC1299484  PMID: 9512034

Abstract

By using neutron and synchrotron x-ray small-angle scattering techniques, we investigated the process of the complexation of gangliosides with proteins. We treated monosialoganglioside (G(M1)), disialoganglioside (G(D1a)), and a mixture of G(M1)/G(D1a). Proteins used were bovine serum albumins whose surfaces were modified with different sugars (deoxy-D-galactose, deoxy-L-fucose, deoxymaltitol, and deoxycellobiitol), which were used as model glycoproteins in a membrane. We found that the complexation of gangliosides with albumins greatly depends on the combination of ganglioside species and protein surface modification. With a varying protein/ganglioside ratio in a buffer solution at pH 7, the complexation of G(M1) or G(D1a) with albumins modified by monosaccharides appears to be less destructive for ganglioside aggregate structures in forming large complexes; the complexation of G(D1a) with the albumins modified by disaccharides induces the formation of complexes with a dimeric structure; and the complexation of G(M1) with albumins modified by disaccharides, to form small complexes, is very destructive. The present results show a strong dependence of the interaction between ganglioside and protein on the characteristics of the ganglioside and protein surface, which would relate to a physiological function of gangliosides, such as a function regulating the receptor activity of glycoproteins in a cell membrane.

Full Text

The Full Text of this article is available as a PDF (129.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acquotti D., Cantù L., Ragg E., Sonnino S. Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem. 1994 Oct 1;225(1):271–288. doi: 10.1111/j.1432-1033.1994.00271.x. [DOI] [PubMed] [Google Scholar]
  2. Allaway G. P., Burness A. T. Site of attachment of encephalomyocarditis virus on human erythrocytes. J Virol. 1986 Sep;59(3):768–770. doi: 10.1128/jvi.59.3.768-770.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corti M., Cantú L. Application of scattering techniques in the domain of amphiphiles. Adv Colloid Interface Sci. 1990 Aug;32(2-3):151–166. doi: 10.1016/0001-8686(90)80016-s. [DOI] [PubMed] [Google Scholar]
  4. GAMMACK D. B. PHYSICOCHEMICAL PROPERTIES OF OX-BRAIN GANGLIOSIDES. Biochem J. 1963 Aug;88:373–383. doi: 10.1042/bj0880373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hakomori S., Igarashi Y. Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res. 1993;25:147–162. [PubMed] [Google Scholar]
  6. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  7. Hayashi K., Katagiri A. Studies on the interaction between gangliosides, protein and divalent cations. Biochim Biophys Acta. 1974 Jan 23;337(1):107–117. [PubMed] [Google Scholar]
  8. Hirai M., Kawai-Hirai R., Hirai T., Ueki T. Structural change of jack bean urease induced by addition of surfactants studied with synchrotron-radiation small-angle X-ray scattering. Eur J Biochem. 1993 Jul 1;215(1):55–61. doi: 10.1111/j.1432-1033.1993.tb18006.x. [DOI] [PubMed] [Google Scholar]
  9. Matsushima N., Izumi Y., Matsuo T., Yoshino H., Ueki T., Miyake Y. Binding of both Ca2+ and mastoparan to calmodulin induces a large change in the tertiary structure. J Biochem. 1989 Jun;105(6):883–887. doi: 10.1093/oxfordjournals.jbchem.a122773. [DOI] [PubMed] [Google Scholar]
  10. Merritt E. A., Sarfaty S., Jobling M. G., Chang T., Holmes R. K., Hirst T. R., Hol W. G. Structural studies of receptor binding by cholera toxin mutants. Protein Sci. 1997 Jul;6(7):1516–1528. doi: 10.1002/pro.5560060716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paul R. W., Lee P. W. Glycophorin is the reovirus receptor on human erythrocytes. Virology. 1987 Jul;159(1):94–101. doi: 10.1016/0042-6822(87)90351-5. [DOI] [PubMed] [Google Scholar]
  12. Sonnino S., Acquotti D., Riboni L., Giuliani A., Kirschner G., Tettamanti G. New chemical trends in ganglioside research. Chem Phys Lipids. 1986 Dec 15;42(1-3):3–26. doi: 10.1016/0009-3084(86)90040-x. [DOI] [PubMed] [Google Scholar]
  13. Sonnino S., Cantù L., Corti M., Acquotti D., Venerando B. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994 May 6;71(1):21–45. doi: 10.1016/0009-3084(94)02304-2. [DOI] [PubMed] [Google Scholar]
  14. Sorice M., Parolini I., Sansolini T., Garofalo T., Dolo V., Sargiacomo M., Tai T., Peschle C., Torrisi M. R., Pavan A. Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res. 1997 May;38(5):969–980. [PubMed] [Google Scholar]
  15. Spiegel S., Fishman P. H. Gangliosides as bimodal regulators of cell growth. Proc Natl Acad Sci U S A. 1987 Jan;84(1):141–145. doi: 10.1073/pnas.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ueki T., Hiragi Y., Kataoka M., Inoko Y., Amemiya Y., Izumi Y., Tagawa H., Muroga Y. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation. Biophys Chem. 1985 Nov;23(1-2):115–124. doi: 10.1016/0301-4622(85)80069-7. [DOI] [PubMed] [Google Scholar]
  17. Ulrich-Bott B., Wiegandt H. Micellar properties of glycosphingolipids in aqueous media. J Lipid Res. 1984 Nov;25(11):1233–1245. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES